通过建立多浮体光伏阵列内部不同连接方式的数值模型,研究在规则波浪入射条件下连接器构型对海上多浮体光伏阵列纵摇响应、连接器弯曲角度、连接器受力、太阳辐照度接收效率的影响,评估海上多浮体光伏阵列的耐波性对连接器的依赖程度。从结果上来看,采用CSD连接器连接的多浮体阵列,运动响应优于铰链连接,承载能力强于螺栓连接,综合耐波性能优于以上两种连接器,且有较强的太阳辐照度接收能力。因此,CSD连接器适用于近海多浮体漂浮式光伏阵列,对加快海上漂浮式光伏商业进程有显著意义。
Abstract
The floating photovoltaic system has a large potential for development as a new type of power generation technology. Offshore floating photovoltaics face challenges with wave-induced damage to connectors in the array. Numerical models are created to analyze various connection configurations within multi-floating photovoltaic arrays. This study examines the effects of different connector configurations on the pitch response, connector bending angles, connector stresses, and receiving solar irradiance of multi-floating photovoltaic arrays in offshore conditions with regular wave incidence. The study evaluates the dependence of the seakeeping performance of offshore multi-floating photovoltaic arrays on connectors. The results indicate that the multi-floating array connected by the connector with spring damping (CSD) has a better motion response than the hinge connection, and it has a stronger load-bearing capacity than the bolt connection. The CSD connector is ideal for offshore multi-floating photovoltaic arrays due to its superior seakeeping performance and strong ability to receive solar irradiance compared to other connectors. The study is of great importance in expediting the commercialization process of offshore floating photovoltaics.
关键词
耐波性 /
海上光伏 /
多浮体 /
CSD连接器 /
光辐照度
Key words
seakeeping /
offshore photovoltaics /
multi-floating bodies /
CSD connector /
solar irradiance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ESSAK L, GHOSH A.Floating photovoltaics: a review[J]. Clean technologies, 2022, 4(3): 752-769.
[2] INTERNATIONAL R E A. Renewable capacity statistics 2025[R]. 2025.
[3] BODUCH A, MIK K, CASTRO R, et al.Technical and economic assessment of a 1 MWp floating photovoltaic system in Polish conditions[J]. Renewable energy, 2022, 196: 983-994.
[4] GOLROODBARI S Z, VAN SARK W.Simulation of performance differences between offshore and land-based photovoltaic systems[J]. Progress in photovoltaics: research and applications, 2020, 28(9): 873-886.
[5] COSTOYA X, DECASTRO M, CARVALHO D, et al.Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: a case study on the western Iberian Peninsula[J]. Renewable and sustainable energy reviews, 2022, 157: 112037.
[6] 安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.
AN Y, ZHENG S Y, SU R, et al.Research on two-layer optimization of wind-solar-water-storage multi energy complementary power generation system[J]. Acta energiae solaris sinica, 2023, 44(12): 510-517.
[7] 曹玲. 渔光互补产业模式发展的研究[D]. 南京: 南京农业大学, 2019.
CAO L.Research on the industry development of photovoltaic power system in fishery[D]. Nanjing: Nanjing Agricultural University, 2019.
[8] 国外海上漂浮式光伏实践[Z].2023. https://newenergy.in-en.com/html/newenergy-2429126.shtml.
Practice of offshore floating photovoltaics abroad[Z].2023. https://newenergy.in-en.com/html/newenergy-2429126.shtml.
[9] 中集来福士交付全球首个竹基复合材料海上漂浮式光伏[Z].2023. https://solar.in-en.com/html/solar-2430499.shtml.
CIMC Raffles delivers the world’s first bamboo-based composite offshore floating photovoltaic[Z].2023. https://solar.in-en.com/html/solar-2430499.shtml.
[10] POURAN H M, PADILHA CAMPOS LOPES M, NOGUEIRA T, et al. Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology[J]. IScience, 2022, 25(11): 105253.
[11] HOOPER T, ARMSTRONG A, VLASWINKEL B.Environmental impacts and benefits of marine floating solar[J]. Solar energy, 2021, 219: 11-14.
[12] 徐普, 黎思亮, 宋启明, 等. 深水漂浮式光伏平台系泊结构动力响应分析[J]. 太阳能学报, 2023, 44(10): 156-164.
XU P, LI S L, SONG Q M, et al.Dynamic response analysis of mooring structure for deep-water floating photovoltaic platform[J]. Acta energiae solaris sinica, 2023, 44(10): 156-164.
[13] TRAPANI K, SANTAFÉ M R.A review of floating photovoltaic installations: 2007—2013[J]. Progress in photovoltaics: research and applications, 2015, 23(4): 524-532.
[14] LI C X, CONG H L, PUYANG Z, et al.Harnessing the power of floating photovoltaic: a global review[J]. Journal of renewable and sustainable energy. 2023, 15(5).
[15] SHI W, YAN C J, REN Z R, et al.Review on the development of marine floating photovoltaic systems[J]. Ocean engineering, 2023, 286: 115560.
[16] ZHANG H C, XU D L, XIA S Y, et al.Nonlinear network modeling of multi-module floating structures with arbitrary flexible connections[J]. Journal of fluids and structures, 2015, 59: 270-284.
[17] 王森, 秦宏伟, 高鹏斌, 等. 南港冰期海上漂浮式光伏技术试验研究[J]. 海洋技术学报, 2023, 42(4): 67-75.
WANG S, QIN H W, GAO P B, et al.Experimental research on floating photovoltaic technology at sea during ice period in Nangang[J]. Journal of ocean technology, 2023, 42(4): 67-75.
[18] DING J, WU Y S, ZHOU Y, et al.A direct coupling analysis method of hydroelastic responses of VLFS in complicated ocean geographical environment[J]. Journal of hydrodynamics, 2019, 31(3): 582-593.
[19] 朱玥. 半潜式超大型浮式结构物连接体疲劳分析研究[D]. 镇江: 江苏科技大学, 2017.
ZHU Y.The fatigue analysis on connector of semi-submersible very large floating structures[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017.
[20] MAEDA H, MARUYAMA S, INOUE R, et al.On the motions of a floating structure which consists of two or three blocks with rigid or pin joints[J]. Journal of the Society of Naval Architects of Japan, 1979, 1979(145): 71-78.
[21] SUN L, TAYLOR R E, CHOO Y S.Responses of interconnected floating bodies[J]. The IES journal part A: civil & structural engineering, 2011, 4(3): 143-156.
[22] HUO F L, YANG H K, GUO J T, et al.Design and overall strength analysis of multi-functional elastic connections floating breakwater system[J]. Journal of Shanghai Jiaotong University (science), 2022, 27(3): 326-338.
[23] 施兴华, 孙哲, 张婧. 考虑连接件刚度影响的多浮体漂浮光伏方阵运动响应分析[J]. 太阳能学报, 2023, 44(8): 301-306.
SHI X H, SUN Z, ZHANG J.Kinematic response analysis of multi-body floating photovoltaic array considering stiffness of connecting parts[J]. Acta energiae solaris sinica, 2023, 44(8): 301-306.
[24] PRAVEEN K M, KARMAKAR D, SOARES C G.Hydroelastic analysis of articulated floating elastic plate based on Timoshenko-Mindlin plate theory[J]. Ships and offshore structures, 2018, 13(sup1): 287-301.
[25] XIA S Y, XU D L, ZHANG H C, et al.On retaining a multi-module floating structure in an amplitude death state[J]. Ocean engineering, 2016, 121: 134-142.
[26] SHI Q J, ZHANG H C, XU D L, et al.Experimental validation of network modeling method on a three-modular floating platform model[J]. Coastal engineering, 2018, 137: 92-102.