多度量下ResGAT的风力发电机齿轮箱故障诊断

李明, 曹洁, 刘宗礼, 王进花

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 683-690.

PDF(3182 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3182 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 683-690. DOI: 10.19912/j.0254-0096.tynxb.2024-0173

多度量下ResGAT的风力发电机齿轮箱故障诊断

  • 李明1, 曹洁, 刘宗礼1, 王进花2
作者信息 +

GEARBOX FAULT DIAGNOSIS WITH RESGAT UNDER MULTIPLE DISTANCE METRICS

  • Li Ming1, Cao Jie, Liu Zongli1, Wang Jinhua2
Author information +
文章历史 +

摘要

针对现有深度学习方法在风力发电机齿轮箱故障诊断方面的特征提取和样本相似性建模局限性,提出一种多种距离度量下残差连接的图注意力网络(ResGAT)。该方法构建全连接图以生成邻接矩阵,并结合多种距离度量方法,充分挖掘样本之间的相似性。利用图注意力网络进行节点特征聚合,结合残差连接以减轻模型梯度消失风险。进一步地,在Adam优化器中融入L2正则化及偏置校正,以降低过拟合问题。实验结果显示,ResGAT方法在WT-Planetary gearbox dataset齿轮箱数据集上能有效提取样本间相似性,并在风力发电机齿轮箱故障诊断上展现出优异性能。

Abstract

To address the limitations of existing deep learning methods in feature extraction and sample similarity modeling for wind turbine gearbox fault diagnosis, we propose a Residual Connected Graph Attention Network (ResGAT) that incorporates multiple distance metrics. This approach constructs a fully connected graph to generate an adjacency matrix and integrates various distance metric methods to fully explore the similarity between samples. Utilizing graph attention networks for node feature aggregation, coupled with residual connections, mitigates the risk of gradient vanishing. Furthermore, L2 regularization and bias correction are incorporated into the Adam optimizer to mitigate overfitting issues. Experimental results demonstrate that the ResGAT method effectively captures sample similarity on the WT-Planetary gearbox dataset and exhibits outstanding performance in fault diagnosis.

关键词

风力发电机 / 齿轮箱 / 故障诊断 / 深度学习 / 图注意力网络 / 过拟合

Key words

wind turbine / gearbox / fault diagnosis / deep learning / graph attention network / overfitting

引用本文

导出引用
李明, 曹洁, 刘宗礼, 王进花. 多度量下ResGAT的风力发电机齿轮箱故障诊断[J]. 太阳能学报. 2025, 46(6): 683-690 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0173
Li Ming, Cao Jie, Liu Zongli, Wang Jinhua. GEARBOX FAULT DIAGNOSIS WITH RESGAT UNDER MULTIPLE DISTANCE METRICS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 683-690 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0173
中图分类号: TP277    TH133.33   

参考文献

[1] 张建超, 陈湘松, 郝如江, 等. 高速动车齿轮箱故障诊断技术研究综述[J]. 机械传动, 2023, 47(3): 133-140.
ZHANG J C, CHEN X S, HAO R J, et al.Review on fault diagnosis technology for high-speed EMU gearboxes[J]. Journal of mechanical transmission, 2023, 47(3): 133-140.
[2] 郭冲. 基于图神经网络的滚动轴承剩余寿命预测[D]. 北京: 北京化工大学, 2023.
GUO C.Prediction of residual life of Rolling bearing Based on Graph Neural network[D]. Beijing: Beijing University of Chemical Technology, 2023.
[3] 谭启瑜, 马萍, 张宏立, 等. 基于图注意力网络的风力发电机齿轮箱故障诊断[J]. 太阳能学报, 2024, 45(1): 265-274.
TAN Q Y, MA P, ZHANG H L, et al.Fault diagnosis for wind turbine gearbox based on graph attention networks[J]. Acta energiae solaris sinica, 2024, 45(1): 265-274.
[4] LI T F, ZHAO Z B, SUN C, et al.Multireceptive field graph convolutional networks for machine fault diagnosis[J]. IEEE Transactions on industrial electronics, 2020, 68(12): 12739-12749.
[5] HE K, YU D J, WANG D, et al.Graph attention network-based fault detection for UAVs with wultivariant time series flight data[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 3530213.
[6] EPISHIN V I.Studying fault tolerance of bipartite homogeneous minimal quasi-complete graphs using cisco packet tracer[C]//2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). St. Petersburg, Moscow, Russia, 2021: 318-320.
[7] LI Q K, MA R X, LIAO M F, et al.A novel fault evaluation method based on nonlinear vibration features and Euclidean distance measurement for grid-like structures[J]. Structural health monitoring, 2023, 22(6): 4131-4148.
[8] LIU X, LIU X M, ZHANG R L, et al.Securely computing the manhattan distance under the malicious model and its applications[J]. Applied sciences, 2022, 12(22): 11705.
[9] WU C Z, WANG B.Extracting topics based on Word2Vec and improved jaccard similarity coefficient[C]//2017 IEEE Second International Conference on Data Science in Cyberspace (Dsc). Shenzhen, China, 2017: 389-397.
[10] SHOPON M, BARI A S M H, GAVRILOVA M L. Residual connection-based graph convolutional neural networks for gait recognition[J]. The visual computer, 2021, 37(9): 2713-2724.
[11] 徐硕, 邓艾东, 杨宏强, 等. 基于改进残差网络的旋转机械故障诊断[J]. 太阳能学报, 2023, 44(7): 409-418.
XU S, DENG A D, YANG H Q, et al.Rotating machinery fault diagnosis method based on improved residual neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 409-418.
[12] 赵小强, 罗维兰, 梁浩鹏. 基于SIR多级残差连接密集网络的轴承故障诊断[J]. 兰州理工大学学报, 2022, 48(6): 46-54.
ZHAO X Q, LUO W L, LIANG H P.Bearing fault diagnosis based on sir multistage residual connection dense network[J]. Journal of Lanzhou University of Technology, 2022, 48(6): 46-54.
[13] 白铂, 刘玉婷, 马驰骋, 等. 图神经网络[J]. 中国科学: 数学, 2020, 50(3): 367-384.
BAI B, LIU Y T, MA C C, et al.Graph neural network[J]. Scientia sinica (mathematica), 2020, 50(3): 367-384.
[14] 刘德澳, 董明刚, 叶威, 等. 基于图神经网络的非均匀风电场功率预测方法[J]. 太阳能学报, 2023, 44(11): 279-286.
LIU D A, DONG M G, YE W, et al.Power prediction method of non-uniform wind farm layout based on graph neural network[J]. Acta energiae solaris sinica, 2023, 44(11): 279-286.
[15] KINGMA D, BA J.Adam: a method for stochastic optimization[J]. Computer science, 2014, 48(2): 2159-2167.
[16] 黄宝洲, 杨俊华, 沈辉, 等. 基于FFT的直驱式波浪发电系统功率优化控制[J]. 太阳能学报, 2021, 42(3): 206-213.
HUANG B Z, YANG J H, SHEN H, et al.Power optimization control of direct drive wave power system based on FFT[J]. Acta energiae solaris sinica, 2021, 42(3): 206-213.
[17] LIU D D, CUI L L, WANG H Q.Rotating machinery fault diagnosis under time-varying speeds: a review[J]. IEEE Sensors Journal, 2023, 23(24): 29969-29990.
[18] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.
QU J L, YU L, YUAN T, et al.Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese journal of scientific instrument, 2018, 39(7): 134-143.
[19] LIU Y X, JAFARPOUR B.Graph attention network with Granger causality map for fault detection and root cause diagnosis[J]. Computers & chemical engineering, 2024, 180: 108453.
[20] QIN J H, HUANG Y J, WEN W S.Multi-scale feature fusion residual network for single image super-resolution[J]. Neurocomputing, 2020, 379: 334-342.

基金

甘肃省自然科学基金(20JR5RA463); 国家自然科学基金(62063020; 61763028); 国家重点研发计划(2020YFB1713600)

PDF(3182 KB)

Accesses

Citation

Detail

段落导航
相关文章

/