海上风电机组导管架失效-安全拓扑优化设计方法

李玉华, 兰若, 龙凯, 耿荣荣, 陈宇棠, 周昳鸣

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 648-654.

PDF(2729 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2729 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 648-654. DOI: 10.19912/j.0254-0096.tynxb.2024-0176

海上风电机组导管架失效-安全拓扑优化设计方法

  • 李玉华1, 兰若1, 龙凯1,2, 耿荣荣1, 陈宇棠1, 周昳鸣3
作者信息 +

FAIL-SAFE TOPOLOGY OPTIMIZATION METHODOLOGY FOR OFFSHORE WIND TURBINE JACKET STRUCTURES OF OFFSHORE WIND TURBINES

  • Li Yuhua1, Lan Ruo1, Long Kai1,2, Geng Rongrong1, Chen Yutang1, Zhou Yiming3
Author information +
文章历史 +

摘要

为提高海上风电机组导管架因船舶碰撞等意外发生变形甚至断裂情况下的可靠性,提出针对导管架结构的失效-安全拓扑优化设计方法。构造最大-最小拓扑优化公式,通过改变失效子区域和失效区域尺寸,优化求解得到一系列优化结构。以某一权因子下拓扑优化结果为例,基于IEC 61400-3规范计算整机极限载荷,采用有限元法分析导管架的极限工况响应。重点考察不同结构设计下的整机一阶固有频率和导管架最大变形。结果表明,优化后的结构在潜在失效情况下表现出更优越的性能,验证了所提方法的可行性和优越性。

Abstract

To enhance the reliability of offshore wind turbine jacket structures under unexpected scenarios such as deformation or even fracture caused by ship collisions, this paper proposes a fail-safe based topology optimization (TO) method for the jacket structures. The maximum-minimization TO formulation is constructed. By varying the size of individual failure zone and overall zone size, a series of optimized structures are obtained through optimization solutions. Taking the TO results under a certain weighting factor as an example, the ultimate loads are calculated based on the IEC 61400-3 principle, and the response of the jacket under ultimate load conditions are analyzed using the finite element method. The focus is on examining the first-order natural frequency of the complete offshore wind turbine and the maximum deformation of the jacket for different structural designs. The results indicate that the optimized structures exhibit superior performance under potential failure conditions, thereby validating the feasibility and superiority of the proposed method.

关键词

海上风电机组 / 导管架 / 拓扑优化 / 结构优化

Key words

offshore wind turbines / jacket / topology optimization / structural optimization

引用本文

导出引用
李玉华, 兰若, 龙凯, 耿荣荣, 陈宇棠, 周昳鸣. 海上风电机组导管架失效-安全拓扑优化设计方法[J]. 太阳能学报. 2025, 46(5): 648-654 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0176
Li Yuhua, Lan Ruo, Long Kai, Geng Rongrong, Chen Yutang, Zhou Yiming. FAIL-SAFE TOPOLOGY OPTIMIZATION METHODOLOGY FOR OFFSHORE WIND TURBINE JACKET STRUCTURES OF OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 648-654 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0176
中图分类号: TH12   

参考文献

[1] CHEW K H, TAI K, NG E Y K, et al. Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads[J]. Marine structures, 2016, 47: 23-41.
[2] GENTILS T, WANG L, KOLIOS A.Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied energy, 2017, 199: 187-204.
[3] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering, 1988, 71(2): 197-224.
[4] ZHOU M, ROZVANY G I N. The COC algorithm, part II: topological, geometrical and generalized shape optimization[J]. Computer methods in applied mechanics and engineering, 1991, 89(1/2/3): 309-336.
[5] BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of applied mechanics, 1999, 69(9): 635-654.
[6] XIE Y M, STEVEN G P.A simple evolutionary procedure for structural optimization[J]. Computers & structures, 1993, 49(5): 885-896.
[7] WANG M Y, WANG X M, GUO D M.A level set method for structural topology optimization[J]. Computer methods in applied mechanics and engineering, 2003, 192(1/2): 227-246.
[8] ALLAIRE G, JOUVE F, TOADER A M.Structural optimization using sensitivity analysis and a level-set method[J]. Journal of computational physics, 2004, 194(1): 363-393.
[9] GUO X, ZHANG W S, ZHONG W L.Doing topology optimization explicitly and geometrically: a new moving morphable components based framework[J]. Journal of applied mechanics, 2014, 81(8): 081009.
[10] LONG K, WANG X, LIU H L.Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming[J]. Structural and multidisciplinary optimization, 2019, 59(5): 1747-1759.
[11] LONG K, WANG X, GU X G.Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm[J]. Engineering optimization, 2018, 50(12): 2091-2107.
[12] ZHANG C W, LONG K, YANG X Y, et al.A transient topology optimization with time-varying deformation restriction via augmented Lagrange method[J]. International journal of mechanics and materials in design, 2022, 18(3): 683-700.
[13] LONG K, HAN D, GU X G.Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson’s ratios for maximum frequency[J]. Computational materials science, 2017, 129: 194-201.
[14] ZHANG C W, LONG K, CHEN Z, et al.Multi-material topology optimization for spatial-varying porous structures[J]. Computer modeling in engineering & sciences, 2024, 138(1): 369-390.
[15] CHEN Z, LONG K, WEN P, et al.Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage[J]. Advances in engineering software, 2020, 150: 102924.
[16] CHEN Z, LONG K, ZHANG C W, et al.A fatigue-resistance topology optimization formulation for continua subject to general loads using rainflow counting[J]. Structural and multidisciplinary optimization, 2023, 66(9): 210.
[17] BUCKNEY N, GREEN S, PIRRERA A, et al.On the structural topology of wind turbine blades[J]. Wind energy, 2013, 16(4): 545-560.
[18] WANG Z J, SUIKER A S J, HOFMEYER H, et al. Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades[J]. Energy conversion and management, 2020, 212: 112621.
[19] TIAN X J, SUN X Y, LIU G J, et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2022, 243: 110084.
[20] ZHANG C W, LONG K, ZHANG J H, et al.A topology optimization methodology for the offshore wind turbine jacket structure in the concept phase[J]. Ocean engineering, 2022, 266: 112974.
[21] 张承婉, 张锦华, 龙凯, 等. 海上风电机组多导管架拓扑优化方法[J]. 太阳能学报, 2023, 44(6): 495-500.
ZHANG C W, ZHANG J H, LONG K, et al.Topology optimization methodology on multi-jacket structure for offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(6): 495-500.
[22] YU Y, WEI M X, YU J X, et al.Reliability-based design method for marine structures combining topology, shape, and size optimization[J]. Ocean engineering, 2023, 286: 115490.
[23] LU F Y, LONG K, DIAELDIN Y, et al.A time-domain fatigue damage assessment approach for the tripod structure of offshore wind turbines[J]. Sustainable energy technologies and assessments, 2023, 60: 103450.
[24] 陆飞宇, 龙凯, 张承婉, 等. 基于拓扑优化的海上风电机组三脚架结构设计[J]. 太阳能学报, 2023, 44(7): 339-344.
LU F Y, LONG K, ZHANG C W, et al.Structural design on tripod structure of offshore wind turbine based on topology optimization method[J]. Acta energiae solaris sinica, 2023, 44(7): 339-344.
[25] JANSEN M, LOMBAERT G, SCHEVENELS M, et al.Topology optimization of fail-safe structures using a simplified local damage model[J]. Structural and multidisciplinary optimization, 2014, 49(4): 657-666.
[26] ZHOU M, FLEURY R.Fail-safe topology optimization[J]. Structural and multidisciplinary optimization, 2016, 54(5): 1225-1243.
[27] LONG K, WANG X, DU Y X.Robust topology optimization formulation including local failure and load uncertainty using sequential quadratic programming[J]. International journal of mechanics and materials in design, 2019, 15(2): 317-332.
[28] WANG H X, LIU J, WEN G L, et al.The robust fail-safe topological designs based on the von Mises stress[J]. Finite elements in analysis and design, 2020, 171: 103376.
[29] HEDERBERG H, THORE C J.Topology optimization for fail-safe designs using moving morphable components as a representation of damage[J]. Structural and multidisciplinary optimization, 2021, 64(4): 2307-2321.
[30] WANG X, SHI Y K, HOANG V N, et al.Reliability-based topology optimization of fail-safe structures using moving morphable bars[J]. Computer modeling in engineering & sciences, 2023, 136(3): 3173-3195.
[31] MARTÍNEZ-FRUTOS J, ORTIGOSA R. Risk-averse approach for topology optimization of fail-safe structures using the level-set method[J]. Computational mechanics, 2021, 68(5): 1039-1061.
[32] ZHANG Y M, ZHANG H Y, QIU L M, et al.A stochastic framework for computationally efficient fail-safe topology optimization[J]. Engineering structures, 2023, 283: 115831.
[33] STOLPE M.Fail-safe truss topology optimization[J]. Structural and multidisciplinary optimization, 2019, 60(4): 1605-1618.
[34] FAIRCLOUGH H E, HE L W, ASFAHA T B, et al.Adaptive topology optimization of fail-safe truss structures[J]. Structural and multidisciplinary optimization, 2023, 66(7): 148.
[35] 石嫄嫄, 和庆冬, 吴衍剑, 等. 基于多失效模式的海上浮式风电机组结构可靠性研究[J]. 太阳能学报, 2022, 43(9): 236-241.
SHI Y Y, HE Q D, WU Y J, et al.Multi-mode reliability analysis on structural of offshore floating wind turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 236-241.
[36] Windturbines-Part 3: Design requirements for offshore wind turbines: DS/EN 61400-3: 2009[S]. Danish Standards[ds], 2009.
[37] LIU X, JIANG D P, LIUFU K M, et al.Numerical investigation into impact responses of an offshore wind turbine jacket foundation subjected to ship collision[J]. Ocean engineering, 2022, 248: 110825.

基金

国家重点研发计划项目(2022YFB4201302); 广东省基础与应用基础研究基金海上风电联合基金(2022A1515240057); 中国华能集团科技项目(HNKJ20-H54); 南方电网公司新能源联合实验室开放课题(GDXNY2024KF03)

PDF(2729 KB)

Accesses

Citation

Detail

段落导航
相关文章

/