以IEA-15 MW风力机为对象,基于涡尾迹模型和几何精确梁模型研究了纵荡工况下叶片形变对风力机性能的影响。结果表明,浮台的纵荡运动所带来的附加速度会改变风力机的入流速度,从而使风力机的载荷出现波动;而相比于固定工况,纵荡工况下风力机的输出功率有所提升,且在考虑叶片柔性后风力机载荷有所下降。此外,在风力机纵荡运动过程中,风力机的载荷对入流速度变化的响应存在延迟,同时叶片柔性形变带来的附加速度会加剧载荷响应的延迟。
Abstract
For large floating wind turbines, the effects of blade flexibility on wind turbine performance cannot be ignored. Based on lift-line free vortex wake model and geometrically exact beam theory model, the effects of blade flexibility on the aerodynamic performance of IEA-15 MW wind turbine is studied in this paper. The results show that the additional velocity brought by the platform's surge motion will change the inflow velocity of the wind turbine, thus causing the fluctuate of wind turbine loads. Compared with the fixed condition, the output power of the wind turbine is increased under the surge condition, while the wind turbine's load is decreased after considering the flexibility of the blade. In addition, there is a delay in the response of the wind turbine's loads to the change of the inflow velocity under surge condition, and the additional velocity caused by the flexible deformation of the blades will aggravate the delay of the load response.
关键词
浮式风力机 /
气动特性 /
柔性形变 /
自由尾迹模型 /
几何精确梁模型
Key words
offshore wind turbines /
aerodynamics /
deflection /
free vortex wake model /
geometrically exact beam model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KIM Y, MADSEN H A, APARICIO-SANCHEZ M, et al.Assessment of blade element momentum codes under varying turbulence levels by comparing with blade resolved computational fluid dynamics[J]. Renewable energy, 2020, 160: 788-802.
[2] 许帅, 霍志红, 许昌, 等. 限功率控制下风电机组叶片疲劳损伤研究[J]. 太阳能学报, 2020, 41(1): 282-289.
XU S, HUO Z H, XU C, et al.Study on fatigue damage of wind turbine blade under power curtailment control condition[J]. Acta energiae solaris sinica, 2020, 41(1): 282-289.
[3] 刘利琴, 肖昌水, 郭颖. 海上浮式水平轴风力机气动特性研究[J]. 太阳能学报, 2021, 42(1): 294-301.
LIU L Q, XIAO C S, GUO Y.Study on aerodynamic characteristics of floating horizontal wind turbine[J]. Acta energiae solaris sinica, 2021, 42(1): 294-301.
[4] 胡丹梅, 吴志祥, 张开华, 等. 不同小翼对风力机气动性能影响的数值分析[J]. 动力工程学报, 2019, 39(6): 486-491.
HU D M, WU Z X, ZHANG K H, et al.Numerical analysis on the aerodynamic characteristics of a wind turbine with different winglets[J]. Journal of Chinese Society of Power Engineering, 2019, 39(6): 486-491.
[5] 吴小飞, 唐胜利, 周文平. 水平轴风力机叶片表面积灰厚度对三维气动特性影响的数值模拟[J]. 流体机械, 2011, 39(11): 32-37, 44.
WU X F, TANG S L, ZHOU W P.Numerical simulation of the effect of dust thickness on three-dimensional aerodynamic performance of HAWT[J]. Fluid machinery, 2011, 39(11): 32-37, 44.
[6] 吴攀, 李春, 叶舟, 等. 粗糙度对风力机专用翼型气动性能影响[J]. 流体机械, 2014, 42(1): 17-21, 62.
WU P, LI C, YE Z, et al.Influence of roughness on aerodynamic performance of dedicated wind turbine airfoil[J]. Fluid machinery, 2014, 42(1): 17-21, 62.
[7] 许波峰, 朱紫璇, 戴成军, 等. 风剪切对风力机叶片气动性能及尾迹形状的影响[J]. 力学学报, 2021, 53(2): 362-372.
XU B F, ZHU Z X, DAI C J, et al.Influence of wind shear on aerodynamic characteristics and wake shape of wind turbine blades[J]. Chinese journal of theoretical and applied mechanics, 2021, 53(2): 362-372.
[8] SU K Y, BLISS D.A novel hybrid free-wake model for wind turbine performance and wake evolution[J]. Renewable energy, 2019, 131: 977-992.
[9] 黄亚振, 陈嘉佳, 沈昕, 等. 浮式风力机横荡运动下气动特性分析[J]. 太阳能学报, 2021, 42(9): 279-285.
HUANG Y Z, CHEN J J, SHEN X, et al.Aerodynamic performance of floating offshore wind turbine under plantform sway motion[J]. Acta energiae solaris sinica, 2021, 42(9): 279-285.
[10] LARSEN T J, HANSEN A M, BUHL T.Aeroelastic effects of large blade deflections for wind turbines[C]//Special Topic Conference: the Science of Making Torque from Wind, Delft University of Technology, 2004: 238-246.
[11] CARRIÓN M, STEIJL R, WOODGATE M, et al. Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method[J]. Journal of fluids and structures, 2014, 50: 392-415.
[12] YU D O, KWON O J.Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method[J]. Renewable energy, 2014, 70: 184-196.
[13] KIM Y, KWON O J.Effect of platform motion on aerodynamic performance and aeroelastic behavior of floating offshore wind turbine blades[J]. Energies, 2019, 12(13): 2519.
[14] LIU Y C, XIAO Q, INCECIK A, et al.Aeroelastic analysis of a floating offshore wind turbine in platform-induced surge motion using a fully coupled CFD-MBD method[J]. Wind energy, 2019, 22(1): 1-20.
[15] GAERTNER E, RINKER J, SETHURAMAN L, et al.IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine[R]. National Renewable Energy Laboratory(NREL), Golden, CO(United States), 2020.
[16] BAUCHAU O A.Flexible multibody dynamics[M]. Dordrecht: Springer, 2011.
[17] LI B, TIAN D, WU X X, et al.The impact of bend-twist coupling on structural characteristics and flutter limit of ultra-long flexible wind turbine composite blades[J]. Energies, 2023, 16(15): 5829.
[18] RINKER J, GAERTNER E, ZAHLE F, et al.Comparison of loads from HAWC2 and OpenFAST for the IEA wind 15 MW reference wind turbine[J]. Journal of physics: conference series, 2020, 1618(5): 052052.
[19] LU M M, KE S T, WU H X, et al.A novel forecasting method of flutter critical wind speed for the 15 MW wind turbine blade based on aeroelastic wind tunnel test[J]. Journal of wind engineering and industrial aerodynamics, 2022, 230: 105195.
基金
中国长江三峡集团有限公司科研项目(202303058); 国家重点研发计划(2020YFB1506600); Ⅳ类高峰能源科学与技术学科资助项目