基于透光光伏组件与液流腔的集成设计,对制冷工况下光伏液流窗于0°、15°、30°倾角下的电热性能进行室外实验测试,以光伏中空窗为参考,对液流腔进水温度为25 ℃、流量为0.4 L/min时两者的性能差异进行对比分析。结果显示,光伏液流窗的隔热性能显著优于光伏中空窗。当太阳辐照度达到620~630 W/m2,室外环境温度为38~39 ℃时,光伏液流窗和光伏中空窗室内侧表面温度分别平均低于室外环境温度9.5 ℃和高于室外温度1 ℃;不同倾角下,通过光伏中空窗直接进入室内的瞬时热量明显更高。倾角为30°时,太阳辐照度为640~650 W/m2,室内外环境温差为9~10 ℃工况下,通过光伏中空窗直接进入室内的瞬时热量均值为9.5 J,约为液流窗的33倍;室内制冷工况下,光伏中空窗电池工作温度分布在24.9~27.3 ℃区间,当液流窗进液温度接近夏季市政供水温度25 ℃时,无法有效为太阳电池降温,应考虑进一步对市政供水进行冷却或采用温度更低的空调冷凝水。
Abstract
The electro-thermal performance of photovoltaic liquid-flow windows with different inclination angles (0°, 15°, and 30°) was experimentally evaluated in an outdoor setting under cooling circumstances. These windows are designed using a combination of semi-transparent solar modules and liquid-flow technology. Comparing the performance of the photovoltaic window with an air layer as a reference, we analyze the difference when the liquid flow input temperature is 25 ℃, and the flow rate is 0.4 L/min. The findings indicate that the thermal insulation performance of the photovoltaic liquid-flow window is much superior to that of the photovoltaic window with an air layer. When the solar irradiance on the surface of the photovoltaic window reaches 620-630 W/m2 and the outdoor ambient temperature is 38-39 ℃, the average indoor surface temperatures of the photovoltaic liquid-flow window and the photovoltaic window with an air layer are respectively 9.5 ℃ lower and 1 ℃ higher than the outdoor ambient temperature. At different inclination angles, the heat flow density through the photovoltaic window with an air layer that enters the room directly is significantly higher. The disparity is most apparent when the inclination angle is set at 30°, the solar irradiance is between 640 and 650 W/m2. The temperature difference between indoor and outdoor conditions is 9 to 10 ℃. The mean value of transient heat entering the indoor space directly through the photovoltaic window with an air layer is 9.5 W, which is about 33 times higher than that of the liquid-flow window. When the indoor space is being cooled, the working temperature of the photovoltaic window with an air layer is distributed between 24.9 and 27.3 ℃. When the temperature of the liquid inflow is about equal to the temperature of the municipal water supply, which is 25 ℃ in summer, it is not feasible to efficiently lower the temperature of the solar cells.
关键词
光伏发电 /
窗户 /
光伏建筑一体化 /
热工性能 /
光伏液流窗 /
对比实验
Key words
photovoltaic power /
windows /
BIPV /
thermal properties /
photovoltaic liquid-flow windows /
comparative experiments
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 彭晋卿, 张强志, 周聪, 等. 新型一体化通风光伏屋顶结构优化和节能潜力研究[J]. 太阳能学报, 2023, 44(12): 24-32.
PENG J Q, ZHANG Q Z, ZHOU C, et al.Structure optimization and energy saving potential investigation of novel intergrated ventilated PV roof[J]. Acta energiae solaris sinica, 2023, 44(12): 24-32.
[2] 杨芝蕊, 彭晋卿, 王蒙, 等. 双面光伏垂直遮阳系统综合能效与参数优化研究[J]. 太阳能学报, 2023, 44(12): 9-16.
YANG Z R, PENG J Q, WANG M, et al.Comprehensive energy efficiency and parameter optimization research of bifacial photovoltaic vertical shading system[J]. Acta energiae solaris sinica, 2023, 44(12): 9-16.
[3] DING H, YU G Q.Development of a simplified resistance-capacity network thermal model for semi-transparent photovoltaic insulating glass unit[J]. Solar energy, 2022, 245: 165-182.
[4] 高静, 彭晋卿, 王韬宁, 等. 不同电池宽度半透明光伏窗天然采光分析[J]. 太阳能学报, 2022, 43(3): 223-230.
GAO J, PENG J Q, WANG T N, et al.Daylighting analysis of semi-transparent photovoltaic windows with different cell widths[J]. Acta energiae solaris sinica, 2022, 43(3): 223-230.
[5] ALRASHIDI H, GHOSH A, ISSA W, et al.Thermal performance of semitransparent CdTe BIPV window at temperate climate[J]. Solar energy, 2020, 195: 536-543.
[6] LEITE DIDONÉ E, WAGNER A.Semi-transparent PV windows: a study for office buildings in Brazil[J]. Energy and buildings, 2013, 67: 136-142.
[7] CHENG Y D, GAO M, JIA J, et al.An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China[J]. Energy, 2019, 170: 356-366.
[8] ZHANG W L, LU L.Overall energy assessment of semi-transparent photovoltaic insulated glass units for building integration under different climate conditions[J]. Renewable energy, 2019, 134: 818-827.
[9] MAREI Y A, EMAM M, AHMED M E A E, et al. Thermal and optical investigations of various transparent wall configurations and building integrated photovoltaic for energy savings in buildings[J]. Energy conversion and management, 2024, 299: 117817.
[10] 朱丽, 霍玉佼, 孙勇, 等. 天津地区双层透光薄膜光伏幕墙热工性能研究[J]. 太阳能学报, 2018, 39(4): 1026-1031.
ZHU L, HUO Y J, SUN Y, et al.Study of thermal performance of double layers translucent thin film PV curtain wall in Tianjin[J]. Acta energiae solaris sinica, 2018, 39(4): 1026-1031.
[11] 高峰, 程远达, 贾捷, 等. 寒冷地区冬季光伏双层窗的节能特性研究[J]. 建筑科学, 2020, 36(4): 24-32.
GAO F, CHENG Y D, JIA J, et al.Study on the energy-saving performance of double-paned photovoltaic window in winter in cold regions[J]. Building science, 2020, 36(4): 24-32.
[12] PENG J Q, LU L, YANG H X, et al.Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes[J]. Applied energy, 2015, 138: 572-583.
[13] PENG J Q, CURCIJA D C, LU L, et al.Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate[J]. Applied energy, 2016, 165: 345-356.
[14] ROBERTS F, YANG S L, DU H, et al.Effect of semi-transparent a-Si PV glazing within double-skin façades on visual and energy performances under the UK climate condition[J]. Renewable energy, 2023, 207: 601-610.
[15] XU C W, SHI X P, NI Y H, et al.Comparative study of dynamic thermal performance of photovoltaic double skin façades influenced by glass transmittance and natural ventilation[J]. Energy and buildings, 2023, 294: 113220.
[16] JIA J, GAO F, CHENG Y D, et al.A comparative study on thermoelectric performances and energy savings of double-skin photovoltaic windows in cold regions of China[J]. Solar energy, 2020, 206: 464-472.
[17] ZHANG C Y, JI J, WANG C Y, et al.Annual analysis and comparison of the comprehensive performance of a CdTe PV ventilated window integrated with vacuum glazing in different climate regions[J]. Renewable energy, 2024, 223: 120029.
[18] ARKAR C, ŽIŽAK T, DOMJAN S, et al. Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts[J]. Applied energy, 2020, 280: 115994.
[19] KARTHICK A, MANOKAR ATHIKESAVAN M, PASUPATHI M K, et al.Investigation of inorganic phase change material for a semi-transparent photovoltaic (STPV) module[J]. Energies, 2020, 13(14): 3582.
[20] UDDIN M M, JI J, WANG C Y, et al.Building energy conservation potentials of semi-transparent CdTe integrated photovoltaic window systems in Bangladesh context[J]. Renewable energy, 2023, 207: 512-530.
[21] ZHU L, WANG P, HUO Y J, et al.Energy savings potential of semitransparent photovoltaic skylights under different climate conditions in China[J]. Energies, 2022, 15(7): 2358.
[22] PARK B R, KIM T W, HYUN J Y, et al.Climate-zone-dependent applicability of semi-transparent cadmium-telluride-type solar cells as a building material with display characteristics[J]. Energy and buildings, 2023, 287: 112977.
[23] CHOW T T, LI C Y, LIN Z.Innovative solar windows for cooling-demand climate[J]. Solar energy materials and solar cells, 2010, 94(2): 212-220.
[24] CHOW T T, LI C Y, LIN Z.Thermal characteristics of water-flow double-pane window[J]. International journal of thermal sciences, 2011, 50(2): 140-148.
[25] LYU Y L, LIU W J, SU H, et al.Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates[J]. Energy, 2019, 175: 353-364.
[26] LIU C, LYU Y L, LI C Y, et al.Thermal performance testing of triple-glazing water flow window in cooing operation[J]. Solar energy, 2021, 218: 108-116.
[27] LYU Y L, ZHENG S K, ZHUO K X, et al.Experimental and numerical performance investigation of a water-flow window with vacuum-glazing insulation[J]. Solar energy, 2022, 233: 259-270.
[28] ACIKGOZ O, KINCAY O.Experimental and numerical investigation of the correlation between radiative and convective heat-transfer coefficients at the cooled wall of a real-sized room[J]. Energy and buildings, 2015, 108:257-266.
基金
中国博士后科学基金(2022M712355)