针对风力发电功率存在较强的间歇性和波动性、预测精度较低的问题,提出基于变分模态分解(VMD)与多策略融合的白鲸优化算法(MBWO)的核极限学习机(KELM)预测模型。首先利用VMD对原始风力发电功率序列进行平稳化处理并构建MBWO-KELM模型,然后将分解后的子序列输入MBWO-KELM模型进行预测,最后对不同子序列进行重构以得到最终的风电功率预测值。结果表明,不同季节下该模型的预测精度和稳定性明显优于其他模型,平均绝对百分比误差(MAPE)值均控制在6%以下,可提高风电能源的利用效率。
Abstract
Aiming at the problem of strong intermittency and volatility and low prediction accuracy of wind power, this paper proposes a short-term wind power prediction model based on Beluga whale optimization algorithm based on multi-strategy fusion (MBWO), Variational mode decomposition (VMD), and Kernel extreme learning machine (KELM) prediction model. Firstly, the original wind power sequence is smoothed by VMD and the MBWO-KELM model is constructed. secondly, the decomposed subsequences are input into the MBWO-KELM model for prediction. Finaly, the different subsequences are reconstructed to obtain the final wind power prediction. The results show that the prediction accuracy and stability of the model are significantly better than other models under different seasons, and the MAPE values are all controlled below 6%, which can improve the utilization efficiency of wind power energy.
关键词
风电功率 /
变分模态分解 /
预测 /
自适应算法 /
核极限学习机
Key words
wind power /
variational modal decomposition /
forecasting /
adaptive algorithms /
kernel extreme learning machine
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 师洪涛, 李艺萱, 丁茂生, 等. 基于多重联合概率与改进加权HMM的风电功率预测方法[J]. 太阳能学报, 2023, 44(11): 247-254.
SHI H T, LI Y X, DING M S, et al.Wind power prediction method based on multiple joint probability and improved weighted HMM[J]. Acta energiae solaris sinica, 2023, 44(11): 247-254.
[2] 周小麟. 基于二次分解和机器学习的超短期风电功率预测方法研究[D]. 成都: 西南交通大学, 2021.
ZHOU X L.Research on ultra short term wind power prediction method based on quadratic decomposition and machine learning[D]. Chengdu: Southwest Jiaotong University, 2021.
[3] 孙亦皓, 刘浩, 胡天宇, 等. 基于时空关联特征与GCN-FEDformer的风速短期预测方法[J]. 中国电机工程学报, 2024, 44(21): 8496-8507.
SUN Y H, LIU H, HU T Y, et al.Short-term wind speed forecasting based on GCN and FED former[J]. Proceedings of the CSEE, 2024, 44(21): 8496-8507.
[4] 庞博文, 丁月明, 杜善慧, 等. 基于CEEMDAN-BO-LSTNet的风电出力短期预测[J]. 电测与仪表, 2023, 60(9): 109-116, 170.
PANG B W, DING Y M, DU S H, et al.Short-term forecasting of wind power output based on CEEMDAN-BO-LSTNet[J]. Electrical measurement & instrumentation, 2023, 60(9): 109-116, 170.
[5] 张浩田, 温蜜, 李晋国, 等. 数据驱动的时间注意力卷积风电功率预测模型[J]. 太阳能学报, 2022, 43(10): 167-176.
ZHANG H T, WEN M, LI J G, et al.Data driven time attention convolution wind power prediction model[J]. Acta energiae solaris sinica, 2022, 43(10): 167-176.
[6] LIU Z F, LIU Y Y, CHEN X R, et al.A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting[J]. Applied energy, 2024, 360: 122785.
[7] WANG C, HE Y, ZHANG H L, et al.Wind power forecasting based on manifold learning and a double-layer SWLSTM model[J]. Energy, 2024, 290: 130076.
[8] DING Y F, CHEN Z J, ZHANG H W, et al.A short-term wind power prediction model based on CEEMD and WOA-KELM[J]. Renewable energy, 2022, 189: 188-198.
[9] SHAN J N, WANG H Z, PEI G, et al.Research on short-term power prediction of wind power generation based on WT-CABC-KELM[J]. Energy reports, 2022, 8: 800-809.
[10] 王瑞, 陈泽坤, 逯静. 基于VMD和IBA-LSSVM的短期风电功率预测[J]. 河海大学学报(自然科学版), 2021, 49(6): 575-582.
WANG R, CHEN Z K, LU J.Short term prediction of wind power based on VMD and IBA-LSSVM[J]. Journal of Hohai University (natural sciences), 2021, 49(6): 575-582.
[11] LI L L, LIU Z F, TSENG M L, et al.Using enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind power[J]. Expert systems with applications, 2021, 184: 115579.
[12] 朱昶胜, 赵奎鹏. 改进灰狼算法的核极限学习机的风功率预测[J]. 计算机应用与软件, 2022, 39(5): 291-298.
ZHU C S, ZHAO K P.Wind power prediction of kernel extreme learning machine based on improved grey wolf algorithm[J]. Computer applications and software, 2022, 39(5): 291-298.
[13] JIANG J F, ZHANG X Y, YUAN Z.Feature selection for classification with Spearman's rank correlation coefficient-based self-information in divergence-based fuzzy rough sets[J]. Expert systems with applications, 2024, 249: 123633.
[14] FU W L, FU Y C, LI B L, et al.A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting[J]. Applied energy, 2023, 348: 121587.
[15] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148.
SHANG L Q, LI H B, HOU Y D, et al.Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J]. Power system protection and control, 2022, 50(21): 138-148.
基金
国家自然科学基金(60771014); 天津市自然科学基金(13JCZDJC29100); 大学生创新创业计划(202310057101)