考虑柔性负荷的联合发电系统低碳经济优化调度

张晓虎, 倪景源

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 420-429.

PDF(1795 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1795 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 420-429. DOI: 10.19912/j.0254-0096.tynxb.2024-0231

考虑柔性负荷的联合发电系统低碳经济优化调度

  • 张晓虎, 倪景源
作者信息 +

LOW-CARBON ECONOMIC OPTIMAL DISPATCH OF COMBINED POWER GENERATION SYSTEM CONSIDERING FLEXIBLE LOADS

  • Zhang Xiaohu, Ni Jingyuan
Author information +
文章历史 +

摘要

在联合发电系统运行中,要求减少系统运行成本,同时实现低碳目标,结合需求侧柔性负荷的可转移、可平移和可削减特性,提出综合发电成本、阶梯式碳交易成本和负荷补偿成本的总成本计算模型,搭建火风光水核抽储联合调度模型。考虑阶梯式碳交易机制参与优化调度,阶梯式碳交易机制能够保证同时达成经济性和低碳性目标。针对白鲸算法在进化过程中求解多样性和精确度降低,引入Tent混沌映射,解决对初始参数敏感问题。仿真结果表明:在柔性负荷和阶梯式碳交易机制参与优化调度后,总成本减少16.2%,碳排放减少12.5%。验证此模型的经济性和低碳性。

Abstract

In the operation of the combined powe system, it is required to reduce the system operation cost and realize the low-carbon goal at the same time. Combining the transferable, shiftable and reducible characteristics of the demand-side flexible loads, a total cost calculation model of integrated power generation cost, pollution penalty cost, stepped carbon trading cost, and load compensation cost is proposed to build a joint dispatch model of fire-wind-scenery-water-nuclear pumping and storage. The stepped carbon trading mechanism is considered to participate in optimal scheduling, which is able to ensure the simultaneous achievement of economic and low-carbon goals . In response to the reduction in solution diversity and accuracy of the Beluga algorithm during the evolution process, Tent chaotic mapping is introduced to solve the initial parameter sensitivity problem. The simulation results show that the total cost is reduced by 16.2% and the carbon emission is reduced by 12.5% after the flexible load and stepped carbon trading mechanisms being involved in the optimal scheduling. The economy and low carbon of this model are verified.

关键词

联合发电系统 / 阶梯式碳交易机制 / 柔性负荷 / 算法改进 / 优化调度

Key words

combined power generation system / stepped carbon trading mechanism / flexible load / algorithm improvement / optimized dispatching

引用本文

导出引用
张晓虎, 倪景源. 考虑柔性负荷的联合发电系统低碳经济优化调度[J]. 太阳能学报. 2025, 46(6): 420-429 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0231
Zhang Xiaohu, Ni Jingyuan. LOW-CARBON ECONOMIC OPTIMAL DISPATCH OF COMBINED POWER GENERATION SYSTEM CONSIDERING FLEXIBLE LOADS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 420-429 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0231
中图分类号: TM732   

参考文献

[1] 李铁, 李正文, 杨俊友, 等. 计及调峰主动性的风光水火储多能系统互补协调优化调度[J]. 电网技术, 2020, 44(10): 3622-3630.
LI T, LI Z W, YANG J Y, et al.Coordination and optimal scheduling of multi-energy complementary system considering peak regulation initiative[J]. Power system technology, 2020, 44(10): 3622-3630.
[2] 李军徽, 罗铉众, 朱星旭, 等. 基于绿证-碳交易机制的风-火-蓄联合调峰控制策略[J]. 电力建设, 2023, 44(7): 11-20.
LI J H, LUO X Z, ZHU X X, et al.Peak regulation control strategy of wind-thermal-storage combined based on green certificate-carbon trading mechanism[J]. Electric power construction, 2023, 44(7): 11-20.
[3] 姜枫, 鲍峰, 姬联涛, 等. 考虑抽蓄-风-光-火联合系统运行经济效益的日前优化调度研究[J]. 水力发电, 2022, 48(1): 99-105, 111.
JIANG F, BAO F, JI L T, et al.Research on optimization of day-ahead dispatching of pumped storage-wind power-photovoltaic-thermal power hybrid system considering operating economic benefit[J]. Water power, 2022, 48(1): 99-105, 111.
[4] 于国强, 刘克天, 胡尊民, 等. 大规模新能源并网下火电机组深度调峰优化调度[J]. 电力工程技术, 2023, 42(1): 243-250.
YU G Q, LIU K T, HU Z M, et al.Optimal scheduling of deep peak regulation for thermal power units in power grid with large-scale new energy[J]. Electric power engineering technology, 2023, 42(1): 243-250.
[5] 安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.
AN Y, ZHENG S Y, SU R, et al.Research on two-layer optimization of wind-solar-water-storage multi energy complementary power generation system[J]. Acta energiae solaris sinica, 2023, 44(12): 510-517.
[6] 刘帅, 吴胜洋, 刘卫亮, 等. 计及不确定性的风光抽蓄发电系统容量优化[J]. 水力发电学报, 2024, 43(3): 43-56.
LIU S, WU S Y, LIU W L, et al.Capacity optimization of wind-solar pumped storage power generation system considering uncertainties[J]. Journal of hydroelectric engineering, 2024, 43(3): 43-56.
[7] 张国斌, 陈玥, 张佳辉, 等. 风-光-水-火-抽蓄联合发电系统日前优化调度研究[J]. 太阳能学报, 2020, 41(8): 79-85.
ZHANG G B, CHEN Y, ZHANG J H, et al.Research on optimization of day-ahead dispatching of wind power-photovoltaic-hydropower-thermal power-pumped storage combined power generation system[J]. Acta energiae solaris sinica, 2020, 41(8): 79-85.
[8] 李亚峰, 王维庆, 寇洋, 等. 考虑绿证-碳联合交易与需求响应综合能源系统经济运行[J]. 太阳能学报, 2023, 44(11): 538-546.
LI Y F, WANG W Q, KOU Y, et al.Considering green certificate-carbon joint trading and demand response integrated energy system economic operation[J]. Acta energiae solaris sinica, 2023, 44(11): 538-546.
[9] 薛开阳, 楚瀛, 凌梓, 等. 考虑柔性负荷的综合能源系统低碳经济优化调度[J]. 可再生能源, 2019, 37(8): 1206-1213.
XUE K Y, CHU Y, LING Z, et al.Low-carbon economic optimal dispatch of integrated energy system considering flexible load[J]. Renewable energy resources, 2019, 37(8): 1206-1213.
[10] 陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41(9): 148-155.
CHEN Z, HU Z J, WENG C H, et al.Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric power automation equipment, 2021, 41(9): 148-155.
[11] 邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47(6): 2185-2198.
ZOU Y H, ZENG A D, HAO S P, et al.Multi-time-scale optimal dispatch of integrated energy systems under stepped carbon trading mechanism[J]. Power system technology, 2023, 47(6): 2185-2198.
[12] 王钦, 陈业夫, 蔡新雷, 等. 考虑柔性负荷和阶梯型碳交易的低碳经济优化调度策略[J]. 广东电力, 2024, 37(1): 76-85.
WANG Q, CHEN Y F, CAI X L, et al.Optimization scheduling strategy for low-carbon economy considering flexible loads and tiered carbon trading[J]. Guangdong electric power, 2024, 37(1): 76-85.
[13] 王歆智, 黄文涛, 贺忠尉, 等. 阶梯碳交易下新型电力系统协同优化出力策略[J]. 湖北工业大学学报, 2024, 39(1): 57-62.
WANG X Z, HUANG W T, HE Z W, et al.A new power system collaborative optimization output strategy under tiered carbon trading[J]. Journal of Hubei University of Technology, 2024, 39(1): 57-62.
[14] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961-3970.
LI J H, ZHANG J H, MU G, et al.Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power system technology, 2019, 43(11): 3961-3970.
[15] 佟曦, 陈衡, 苟凯杰, 等. 考虑阶梯式碳交易机制的电化学储能与抽水蓄能协同调度优化[J]. 动力工程学报, 2024, 44(3): 430-438.
TONG X, CHEN H, GOU K J, et al.Collaborative dispatching optimization of electrochemical energy storage and pumped storage considering a stepped carbon trading mechanism[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 430-438.
[16] 李琛玺, 燕恒, 张浩, 等. 计及阶梯式碳交易的风-光-火-抽蓄联合系统日前优化调度[J]. 水利学报, 2023, 54(10): 1163-1176.
LI C X, YAN H, ZHANG H, et al.Research on optimal scheduling of wind-photovoltaic-thermal-pumped storage combined power generation system considering ladder-type carbon trading[J]. Journal of hydraulic engineering, 2023, 54(10): 1163-1176.
[17] 刘蓉晖, 李子林, 杨秀, 等. 考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J]. 太阳能学报, 2019, 40(10): 2842-2850.
LIU R H, LI Z L, YANG X, et al.Optimal dispatch of community integrated energy system considering user-side flexible load[J]. Acta energiae solaris sinica, 2019, 40(10): 2842-2850.
[18] 傅京燕, 邹海英. 碳价格对我国工业部门竞争力及减排效应[J]. 科技管理研究, 2017, 37(7): 234-241.
FU J Y, ZOU H Y.Impacts of carbon price on industrial competitiveness and emission reduction: analysis based on input-output simulation[J]. Science and technology management research, 2017, 37(7): 234-241.
[19] 刘自敏, 朱朋虎, 李兴. 递增阶梯电价政策的价格优化与效果评估: 基于个人碳交易视角[J]. 经济与管理研究, 2018, 39(8): 108-122.
LIU Z M, ZHU P H, LI X.Price optimization and effect evaluation of increasing block pricing: based on the perspective of personal carbon trading[J]. Research on economics and management, 2018, 39(8): 108-122.
[20] 彭丽, 罗隆福, 阳同光, 等. 考虑峰谷分时电价的风储联合发电系统跟踪风电计划出力控制策略[J]. 可再生能源, 2023, 41(12): 1634-1641.
PENG L, LUO L F, YANG T G, et al.Tracking wind power planned output control strategy of wind storage combined power generation system considering peak-valley time-of-use electricity prices[J]. Renewable energy resources, 2023, 41(12): 1634-1641.

基金

国家重点研发计划(2022YFE0105200)

PDF(1795 KB)

Accesses

Citation

Detail

段落导航
相关文章

/