以光伏为电源的无线充电式新能源汽车控制研究

王呈轩, 宫瑞邦, 樊艳芳, 宗思佳, 程俊文, 张雷亮

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 306-313.

PDF(2976 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2976 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 306-313. DOI: 10.19912/j.0254-0096.tynxb.2024-0240

以光伏为电源的无线充电式新能源汽车控制研究

  • 王呈轩1, 宫瑞邦1, 樊艳芳2, 宗思佳1, 程俊文1, 张雷亮1
作者信息 +

RESEARCH ON CONTROL OF WIRELESS CHARGING NEW ENERGY VEHICLES WITH PHOTOVOLTAIC AS POWER SOURCE

  • Wang Chengxuan1, Gong Ruibang1, Fan Yanfang2, Zong Sijia1, Cheng Junwen1, Zhang Leiliang1
Author information +
文章历史 +

摘要

为确保电动汽车的充电便捷性与环保性,该文提出将无线充电技术与光伏发电技术集成于电动汽车充电系统,并分别对光伏系统、无线电能传输系统及车载电池提出相应的控制策略,通过无线电能传输系统试验平台验证近场通信下闭环最大效率点跟踪控制下无线充电的可行性及高效性,最后通过Matlab/Simulink仿真验证所提以光伏为电源的无线充电式新能源汽车的有效性。

Abstract

In order to ensure the charging convenience and environmental protection of electric vehicles, this paper proposes to integrate wireless charging technology and photovoltaic power generation technology into the electric vehicle charging system, and proposes corresponding control strategies for the photovoltaic system, wireless power transmission system and on-board battery respectively. Matlab/Simulink simulation verifies the effectiveness of the proposed wireless charging new energy vehicle with photovoltaic as the power source.

关键词

电动汽车 / 光伏充电 / 衡流充电 / 无线充电 / 车载电池 / 闭环最大效率点跟踪控制

Key words

electric vehicles / photovoltaic charging / constant current charging / wireless charging / on-board batteries / closed-loop maximum efficiency point tracking control

引用本文

导出引用
王呈轩, 宫瑞邦, 樊艳芳, 宗思佳, 程俊文, 张雷亮. 以光伏为电源的无线充电式新能源汽车控制研究[J]. 太阳能学报. 2025, 46(6): 306-313 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0240
Wang Chengxuan, Gong Ruibang, Fan Yanfang, Zong Sijia, Cheng Junwen, Zhang Leiliang. RESEARCH ON CONTROL OF WIRELESS CHARGING NEW ENERGY VEHICLES WITH PHOTOVOLTAIC AS POWER SOURCE[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 306-313 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0240
中图分类号: TM724   

参考文献

[1] 解宝, 李萍宇, 苏绎仁, 等. 局部阴影下光伏阵列的最大功率点跟踪算法研究[J]. 太阳能学报, 2023, 44(12): 47-52.
XIE B, LI P Y, SU Y R, et al.Research on maximum power point tracking algorithm of PV array under local shadow[J]. Acta energiae solaris sinica, 2023, 44(12): 47-52.
[2] 杨丽君, 杨博, 安立明, 等. 考虑电动汽车响应的光储微电网储能优化配置[J]. 太阳能学报, 2020, 41(4): 340-347.
YANG L J, YANG B, AN L M, et al.Optimal configuration of grid-connected PV-and-storage microgrid considering EVS'demand response[J]. Acta energiae solaris sinica, 2020, 41(4): 340-347.
[3] 朱永胜, 乔百豪, 瞿博阳, 等. 含风电及电动汽车的多目标电力系统调度[J]. 太阳能学报, 2019, 40(6): 1722-1730.
ZHU Y S, QIAO B H, QU B Y, et al.Multi-ojective power system dispatch with wind power and electric vehicles[J]. Acta energiae solaris sinica, 2019, 40(6): 1722-1730.
[4] 孙科, 陈文钢, 陈佳佳, 等. 基于电动汽车的极端场景多微电网韧性提升策略研究[J]. 电力系统保护与控制, 2023, 51(24): 53-65.
SUN K, CHEN W G, CHEN J J, et al.A resilience enhancement strategy for multi-microgrid in extreme scenarios based on electric vehicles[J]. Power system protection and control, 2023, 51(24): 53-65.
[5] 王呈轩, 李弘昌, 樊艳芳, 等. 由光伏直接供电的电动汽车无线充电系统控制策略[J]. 科学技术与工程, 2021, 21(29): 12595-12602.
WANG C X, LI H C, FAN Y F, et al.Control strategy of electric vehicle wireless charging system directly powered by photovoltaic[J]. Science technology and engineering, 2021, 21(29): 12595-12602.
[6] 葛凯梁, 仇钧, 朱海. 基于中继线圈的电动汽车静态无线充电系统抗偏移性能提升研究[J]. 电源学报, 2023, 21(6): 35-42.
GE K L, QIU J, ZHU H.Research on improvement of anti-misalignment capacity of static wireless charging system for electric vehicles based on relay coil[J]. Journal of power supply, 2023, 21(6): 35-42.
[7] WANG K P, WANG L L, YANG X, et al.A multiloop method for minimization of parasitic inductance in GaN-based high-frequency DC-DC converter[J]. IEEE transactions on power electronics, 2017, 32(6): 4728-4740.
[8] LIU Z M, WANG L F, YIN C L, et al.A research on constant voltage output characteristics of wireless power transfer system with a DC-DC converter[C]//2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC). Santos, Brazil, 2019: 1-4.
[9] HUANG Y, SHINOHARA N, MITANI T.Theoretical analysis on DC-DC converter for impedance matching of a rectifying circuit in wireless power transfer[C]//2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). Sendai, Japan, 2015: 229-231.
[10] ZHU C Y, YU J, GU Y D, et al.Analysis and design of cost-effective WPT systems with dual independently regulatable outputs for automatic guided vehicles[J]. IEEE transactions on power electronics, 2021, 36(6): 6183-6187.
[11] TRUJILLO-AGUILERA F D, BLÁZQUEZ-PARRA E B, DELGADO-EXPÓSITO A. Design and implementation of a wireless charger based on WPT technology[C]//2022 6th European Conference on Electrical Engineering & Computer Science (ELECS). Bern, Switzerland, 2022: 53-58.
[12] 王呈轩, 樊艳芳, 李弘昌, 等. 直流微网供电的电动汽车无线充电站控制策略[J]. 电网与清洁能源, 2022, 38(10): 126-134.
WANG C X, FAN Y F, LI H C, et al.Research on the control strategy of electric vehicle wireless charging station powered by DC microgrid[J]. Power system and clean energy, 2022, 38(10): 126-134.
[13] DONG G Y, MISHIMA T, OMORI H, et al.A single-phase direct AC-AC wireless power transfer system using conduction mode-exchanged pulse density modulation[C]//2023 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). Chiang Mai, Thailand, 2023: 1-5.
[14] LI H C, LI J, WANG K P, et al.A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE transactions on power electronics, 2015, 30(7): 3998-4008.
[15] MATHURE U, RAMKRISHNA R V S. Simulation of maximum efficiency point tracking in wireless power transfer systems using pulse density modulation[C]//2020 Third International Conference on Multimedia Processing, Communication & Information Technology (MPCIT). Shivamogga, India, 2020: 1-9.

基金

新疆维吾尔自治区自然科学基金(2022D01C365; 2022D01C662)

PDF(2976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/