气体扩散层压缩形变对PEM燃料电池性能影响分析

吕宝, 韩恺, 王永真

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 203-211.

PDF(3454 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3454 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 203-211. DOI: 10.19912/j.0254-0096.tynxb.2024-0241

气体扩散层压缩形变对PEM燃料电池性能影响分析

  • 吕宝1, 韩恺1,2, 王永真1,2
作者信息 +

ANALYSIS OF EFFECT OF COMPRESSIVE DEFORMATION OF GAS DIFFUSION LAYER ON THE PERFORMANCE OF PEM FUEL CELL

  • Lyu Bao1, Han Kai1,2, Wang Yongzhen1,2
Author information +
文章历史 +

摘要

以质子交换膜(PEM)燃料电池气体扩散层(GDL)为对象,基于Comsol建立考虑催化层复杂结构的球形催化剂团簇模型,通过数值模拟和实验验证的方法探究GDL形变与性能之间的关系。结果表明:当封装载荷小于0.6 MPa时,接触电阻降低对电池所带来的正效应占主导地位,接触电阻计算结果与实验值最大误差为1.7%;封装力较大时,GDL 孔隙率降低所带来的负效应占主导地位,且封装载荷对液态水饱和度分布影响较大;GDL形变量为27.2%时电池输出功率最大。

Abstract

The gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cell was taken as the research object, and a spherical catalyst cluster model considering the complex structure of the catalyst layer was established based on Comsol. The relationship between GDL deformation and performance was investigated by numerical simulation and experimental verification. The results show that when the packaging load is less than 0.6 MPa, the positive effect of contact resistance reduction on the battery is dominant, and the maximum error between the contact resistance calculated value and the experimental value is 1.7%, which meets the accuracy requirements. When the encapsulation force is large, the negative effect caused by the decrease of GDL porosity is dominant, and the encapsulation load has a great influence on the distribution of liquid water saturation. When the GDL shape variable is 27.2%, the battery output power is maximum.

关键词

质子交换膜燃料电池 / 压缩 / 数值仿真 / 团聚体模型 / 气体扩散层

Key words

proton exchange membrane fuel cell / compression / numerical simulation / agglomeration model / gas diffusion layer

引用本文

导出引用
吕宝, 韩恺, 王永真. 气体扩散层压缩形变对PEM燃料电池性能影响分析[J]. 太阳能学报. 2025, 46(6): 203-211 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0241
Lyu Bao, Han Kai, Wang Yongzhen. ANALYSIS OF EFFECT OF COMPRESSIVE DEFORMATION OF GAS DIFFUSION LAYER ON THE PERFORMANCE OF PEM FUEL CELL[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 203-211 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0241
中图分类号: TM911.4   

参考文献

[1] ZHANG G B, FAN L H, SUN J, et al.A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties[J]. International journal of heat and mass transfer, 2017, 115: 714-724.
[2] SHARMA S, GHOSHAL S K.Hydrogen the future transportation fuel: from production to applications[J]. Renewable and sustainable energy reviews, 2015, 43: 1151-1158.
[3] CHAKRABORTY U.Fuel crossover and internal current in proton exchange membrane fuel cell modeling[J]. Applied energy, 2016, 163: 60-62.
[4] HU G L, JI C, XIA Y Z, et al.Assembly mechanics and its effect on performance of proton exchange a membrane fuel cell[J]. International journal of electrochemical science, 2019, 14(2): 1358-1371.
[5] 张创, 蒋国璋, 王诚, 等. 扭矩对高温燃料电池性能的影响及优化[J]. 太阳能学报, 2018, 39(12): 3594-3600.
ZHANG C, JIANG G Z, WANG C, et al.Influence of torque on performance of high temperature fuel cell and its optimization[J]. Acta energiae solaris sinica, 2018, 39(12): 3594-3600.
[6] VIKRAM A, CHOWDHURY P R, PHILLIPS R K, et al.Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression: Part I: electrical conductivity[J]. Journal of power sources, 2016, 320: 274-285.
[7] LIANG P, QIU D K, PENG L F, et al.Contact resistance prediction of proton exchange membrane fuel cell considering fabrication characteristics of metallic bipolar plates[J]. Energy conversion and management, 2018, 169: 334-344.
[8] 韩雪梅, 谈金祝, 刘永昌, 等. PEM燃料电池接触压力和电化学性能的研究[J]. 太阳能学报, 2016, 37(11): 2978-2982.
HAN X M, TAN J Z, LIU Y C, et al.Study on contact pressure and electrochemical performance of PEM fuel cell[J]. Acta energiae solaris sinica, 2016, 37(11): 2978-2982.
[9] 焦魁, 孙晓妍, 周侠, 等. 压缩对不同疏水性处理气体扩散层内两相流的影响[J]. 工程热物理学报, 2020, 41(1): 1-6.
JIAO K, SUN X Y, ZHOU X, et al.Effects of compression on two-phase flow in the GDL with various wettability[J]. Journal of engineering thermophysics, 2020, 41(1): 1-6.
[10] 李雅楠. 气体扩散层微观结构压缩变形后传输特性变化规律的数值模拟研究[D]. 天津: 天津大学, 2019.
LI Y N.Numerical simulation and analysis of transmission parameters for compressed gas diffusion layer microstructures[D]. Tianjin: Tianjin University, 2019.
[11] IRMSCHER P, QUI D, JANßEN H, et al. Impact of gas diffusion layer mechanics on PEM fuel cell performance[J]. International journal of hydrogen energy, 2019, 44(41): 23406-23415.
[12] FERREIRA R B, FALCÃO D S, OLIVEIRA V B, et al. Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method: a review[J]. Journal of power sources, 2015, 277: 329-342.
[13] CHEN L, ZHANG R Y, HE P, et al.Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells[J]. Journal of power sources, 2018, 400: 114-125.
[14] ZHANG G B, JIAO K.Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy conversion and management, 2018, 176: 409-421.
[15] LI W Z, YANG W W, WANG N, et al.Optimization of blocked channel design for a proton exchange membrane fuel cell by coupled genetic algorithm and three-dimensional CFD modeling[J]. International journal of hydrogen energy, 2020, 45(35): 17759-17770.
[16] 郝明晟, 李印实, 何雅玲. 质子交换膜燃料电池催化层模型研究进展与展望[J]. 科学通报, 2022, 67(19): 2192-2211.
HAO M S, LI Y S, HE Y L.Model of catalyst layers for proton exchange membrane fuel cells: progress and perspective[J]. Chinese science bulletin, 2022, 67(19): 2192-2211.
[17] LIANG J R, LI Y S, WANG R, et al.Cross-dimensional model of the oxygen transport behavior in low-Pt proton exchange membrane fuel cells[J]. Chemical engineering journal, 2020, 400: 125796.
[18] MIN T, CHEN L, GAO Y M, et al.Pore-scale study of gas transport in catalyst layers of PEMFCs[J]. Energy procedia, 2019, 158: 1479-1484.
[19] VAZ N, CHOI J, CHA Y, et al.Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale, two-phase fuel cell model and data-driven surrogates[J]. Journal of energy chemistry, 2023, 81: 28-41.
[20] ZHANG H, XIAO L S, CHUANG P A, et al.Coupled stress-strain and transport in proton exchange membrane fuel cell with metallic bipolar plates[J]. Applied energy, 2019, 251: 113316.
[21] LYU B, HAN K, WANG Y Z, et al.Analysis and experimental verification of the sealing performance of PEM fuel cell based on fractal theory[J]. Fractal and fractional, 2023, 7(5): 401.

基金

重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0759)

PDF(3454 KB)

Accesses

Citation

Detail

段落导航
相关文章

/