稳态工况下在役风力机叶片的载荷测试和识别

周勃, 张丽新, 包洪兵, 俞志强

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 597-606.

PDF(2440 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2440 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 597-606. DOI: 10.19912/j.0254-0096.tynxb.2024-0243

稳态工况下在役风力机叶片的载荷测试和识别

  • 周勃1,2, 张丽新2, 包洪兵3, 俞志强3
作者信息 +

BLADE LOAD TESTING AND IDENTIFICATION OF IN-SERVICE WIND TURBINES UNDER STEADY STATE CONDITIONS

  • Zhou Bo1,2, Zhang Lixin2, Bao Hongbing3, Yu Zhiqiang3
Author information +
文章历史 +

摘要

针对稳态工况下运行的陆上风力机叶片载荷测试和识别问题,首先基于等效疲劳载荷理论,结合应变载荷测量技术设计载荷测试方案,根据载荷测量要求进行数据采集、传感器布置和标定,搭建叶片载荷监测系统;其次,在叶片监测系统中通过应变片获得稳态工况下的测试载荷,同步采集测风塔、雷达等风特性信息以及数据采集与监视控制(SCADA)系统获得风力机控制状态信息,并根据风速俘获矩阵模拟得到仿真载荷;由于测试载荷数据时长与设计载荷时长不同,为便于比较,将设计载荷、测试载荷、仿真载荷都转换为1 Hz下的等效疲劳载荷进行对比。结果表明:同一截面测试载荷与设计载荷比值在104.0%~130.2%区间,符合叶片载荷设计安全裕量,同一截面测试载荷与仿真载荷比值差异较大,说明稳态工况下载荷监测的动态变化与湍流强度强相关,有必要监测风剪切和湍流参数以反映实际载荷有效防止过载运行。

Abstract

The problem of blade load testing and identification are discussed for onshore wind turbines operating under steady state conditions. Firstly, the load test scheme is designed based on the equivalent fatigue load theory and strain load measurement technology. According to the load measurement requirements, data acquisition, sensor layout and calibration are carried out to build the blade monitoring system. Secondly, the strain gauges are used in the blade monitoring system to obtain the test load under steady state conditions. In the blade monitoring system, the wind characteristic information from wind tower and radar is collected synchronously. At the same time, the wind turbine control state information is obtained by the SCADA system. The simulation load is obtained according to the wind speed capture matrix. Since the test load data duration is different from that of the design load, the design load, test load and simulation load are converted to equivalent fatigue load at 1Hz for comparison. The results show that the ratio of test load and design load of the same section is in the range of 104.0%-130.2%, which meets the safety margin of blade load design. The test load and simulation load of the same section are quite different, indicating that the dynamic change of load monitoring under steady state condition is strongly related to turbulence intensity. Therefore, it is necessary to monitor wind shear and turbulence parameters to reflect the actual load, which can prevent overload operation effectively.

关键词

风力机叶片 / 载荷测试 / 应变测量 / 稳态工况 / 等效疲劳载荷

Key words

wind turbine blades / load testing / strain measurement / steady state condition / equivalent fatigue load

引用本文

导出引用
周勃, 张丽新, 包洪兵, 俞志强. 稳态工况下在役风力机叶片的载荷测试和识别[J]. 太阳能学报. 2025, 46(6): 597-606 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0243
Zhou Bo, Zhang Lixin, Bao Hongbing, Yu Zhiqiang. BLADE LOAD TESTING AND IDENTIFICATION OF IN-SERVICE WIND TURBINES UNDER STEADY STATE CONDITIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 597-606 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0243
中图分类号: TK83   

参考文献

[1] REN Z R, VERMA A S, LI Y, et al.Offshore wind turbine operations and maintenance: a state-of-the-art review[J]. Renewable and sustainable energy reviews, 2021, 144: 110886.
[2] DAI J C, LI M M, CHEN H G, et al.Progress and challenges on blade load research of large-scale wind turbines[J]. Renewable energy, 2022, 196: 482-496.
[3] NIELSEN J S, TCHERNIAK D, ULRIKSEN M D.A case study on risk-based maintenance of wind turbine blades with structural health monitoring[J]. Structure and infrastructure engineering, 2021, 17(3): 302-318.
[4] DU Y, ZHOU S X, JING X J, et al.Damage detection techniques for wind turbine blades: a review[J]. Mechanical systems and signal processing, 2020, 141: 106445.
[5] GARCÍA MÁRQUEZ F P, PECO CHACÓN A M. A review of non-destructive testing on wind turbines blades[J]. Renewable energy, 2020, 161: 998-1010.
[6] 高峰, 张鸿, 许琳, 等. 风电机组叶片故障仿真与状态判别研究[J]. 太阳能学报, 2023, 44(4): 52-59.
GAO F, ZHANG H, XU L, et al.Research on fault simulation and state judgment of wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(4): 52-59.
[7] LIU P F, XU D, LI J G, et al.Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning[J]. Structural health monitoring, 2020, 19(4): 1092-1103.
[8] CHANDRASEKHAR K, STEVANOVIC N, CROSS E J, et al.Damage detection in operational wind turbine blades using a new approach based on machine learning[J]. Renewable energy, 2021, 168: 1249-1264.
[9] DAO C D, KAZEMTABRIZI B, CRABTREE C J, et al.Integrated condition-based maintenance modelling and optimisation for offshore wind turbines[J]. Wind energy, 2021, 24(11): 1180-1198.
[10] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[11] 陈雪峰, 杨志勃, 田绍华, 等. 复合材料结构损伤识别与健康监测展望[J]. 振动测试与诊断, 2018, 38(1): 1-10, 202.
CHEN X F, YANG Z B, TIAN S H, et al.A review of the damage detection and health monitoring for composite structures[J]. Journal of vibration, measurement & diagnosis, 2018, 38(1): 1-10, 202.
[12] SIERRA-PÉREZ J, TORRES-ARREDONDO M A, GÜEMES A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition FBGs, OBR and strain gauges comparison[J]. Composite structures, 2016, 135: 156-166.
[13] MOYNIHAN B, MOAVENI B, LIBERATORE S, et al.Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification[J]. Renewable energy, 2022, 184: 662-676.
[14] MYLONAS C, ABDALLAH I, CHATZI E.Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using Supervisory, Control, and Data Acquisition data[J]. Wind energy, 2021, 24(10): 1122-1139.
[15] ZHU P Y, FENG X B, LIU Z, et al.Reliable packaging of optical fiber Bragg grating sensors for carbon fiber composite wind turbine blades[J]. Composites science and technology, 2021, 213: 108933.
[16] 王超, 戴巨川, 杨鑫, 等. 基于“应变-载荷” 模型的大型风电机组叶片载荷识别研究[J]. 太阳能学报, 2019, 40(5): 1423-1432.
WANG C, DAI J C, YANG X, et al.Research on blade load identification of large-scale wind turbinesbased on“stress-load” model[J]. Acta energiae solaris sinica, 2019, 40(5): 1423-1432.
[17] 李德顺, 胡渊, 李仁年, 等. 强湍流相干结构对偏航风力机叶根载荷的影响[J]. 农业工程学报, 2020, 36(20): 102-109.
LI D S, HU Y, LI R N, et al.Effects of strong turbulence structure coherent on load of blade root in a yaw wind turbine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 102-109.
[18] KAEWNIAM P, CAO M S, ALKAYEM N F, et al.Recent advances in damage detection of wind turbine blades: a state-of-the-art review[J]. Renewable and sustainable energy reviews, 2022, 167: 112723.
[19] IEC/TS 61400-13,Wind turbine generator systems-part 13: measurement of mechanical loads[S].
[20] JB/T 25383—2010, 风力发电机组-风轮叶片[S].
JB/T 25383-2010, Wind power generation unit-wind turbine blades[S].

基金

国家自然科学基金(52175105); 辽宁省教育厅高等学校基本科研项目(JYTMS20231218); 沈阳市科学技术计划项目(23407321)

PDF(2440 KB)

Accesses

Citation

Detail

段落导航
相关文章

/