基于改进文化基因算法的热电联产系统灵活性改造及优化调度

王黎明, 刘颖明, 庞新富, 王晓东, 王瀚博

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 410-419.

PDF(1884 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1884 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 410-419. DOI: 10.19912/j.0254-0096.tynxb.2024-0244

基于改进文化基因算法的热电联产系统灵活性改造及优化调度

  • 王黎明1,2, 刘颖明1, 庞新富2, 王晓东1, 王瀚博1
作者信息 +

FLEXIBLE RETROFITTING AND OPTIMAL SCHEDULING OF COGENERATION SYSTEM BASED ON IMPROVED MEMETIC ALGORITHM

  • Wang Liming1,2, Liu Yingming1, Pang Xinfu2, Wang Xiaodong1, Wang Hanbo1
Author information +
文章历史 +

摘要

针对中国“三北”地区供暖季热电联产系统“以热定电”工作模式下的弃风限电问题,对系统的灵活性进行改造,通过在系统中引入分时电价和热舒适度挖掘需求侧响应潜力,增设储热罐和电锅炉进一步解除热-电耦合,并提出一种考虑需求侧响应和热-电解耦元件的优化调度方法。该方法采用多目标分层序列法处理调度目标,包括调度解质量、经济性和风电消纳能力,并设计一种基于改进文化基因算法的求解方法,利用自适应交叉概率和变异概率以及基于邻域交换的模拟退火策略,提高算法的收敛性和寻优性能。仿真结果表明,该方案能够有效提高热电联产系统运行经济性和风电利用率,且热-电解耦装置的效果优于需求侧响应。

Abstract

This paper aims at the problem of wind curtailment and power limitation in the cogeneration system under the “heat-oriented” operation mode in the heating season of the “Three North” regions in China. The system's flexibility is improved by introducing time-of-use electricity price and thermal comfort degree to exploit the potential of demand response and by adding a thermal storage tank and electric boiler to decouple heat and power further. An optimal scheduling method considering demand response and heat-power decoupling components is proposed. The method adopts a multi-objective hierarchical sequencing method to deal with the scheduling objectives, including the quality of the scheduling solution, economy, and wind power consumption capacity. An improved memetic algorithm, which uses adaptive crossover probability and mutation probability and a simulated annealing strategy based on neighborhood exchange, is designed to solve the problem and enhance the algorithm's convergence and optimization performance. The simulation results show that the scheme can effectively improve the economic operation and wind power utilization rate of the cogeneration system, and the effect of heat-power decoupling devices is better than that of demand response.

关键词

风电消纳 / 热电联产电厂 / 需求侧响应 / 改进文化基因算法 / 优化调度

Key words

wind power consumption / combined heat and power plants / demand-side response / improved memetic algorithm / optimal scheduling

引用本文

导出引用
王黎明, 刘颖明, 庞新富, 王晓东, 王瀚博. 基于改进文化基因算法的热电联产系统灵活性改造及优化调度[J]. 太阳能学报. 2025, 46(6): 410-419 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0244
Wang Liming, Liu Yingming, Pang Xinfu, Wang Xiaodong, Wang Hanbo. FLEXIBLE RETROFITTING AND OPTIMAL SCHEDULING OF COGENERATION SYSTEM BASED ON IMPROVED MEMETIC ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 410-419 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0244
中图分类号: TP18    TM73   

参考文献

[1] 李家珏, 李平, 王刚, 等. 计及弃风消纳的热电联产系统的日前调度模型[J]. 太阳能学报, 2021, 42(9): 295-301.
LI J J, LI P, WANG G, et al.Day-to-day scheduling model for cogeneration system accounting for wind power accommodation[J]. Acta energiae solaris sinica, 2021, 42(9): 295-301.
[2] 卞一帆, 谢丽蓉, 杨建宾, 等. 计及弃风的“电气互补-冷热联供” 模式研究[J]. 太阳能学报, 2022, 43(4): 311-317.
BIAN Y F, XIE L R, YANG J B, et al.Study on mode of “electricity and gas complementation-cooling and heating combined supply” considering wind curtailment[J]. Acta energiae solaris sinica, 2022, 43(4): 311-317.
[3] 成后炉, 蔺红. 提高风电消纳能力的区域电网动态划分[J]. 太阳能学报, 2020, 41(12): 26-32.
CHENG H L, LIN H.Dynamic partition of regional power grids to improve wind power accommodation capacity[J]. Acta energiae solaris sinica, 2020, 41(12): 26-32.
[4] GIMELLI A, MOTTOLA F, MUCCILLO M, et al.Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service[J]. Applied energy, 2019, 242: 974-993.
[5] HE Y, GUO S, ZHOU J X, et al.The many-objective optimal design of renewable energy cogeneration system[J]. Energy, 2021, 234: 121244.
[6] LI P, HU Q Y, SUN Y, et al.Thermodynamic and economic performance analysis of heat and power cogeneration system based on advanced adiabatic compressed air energy storage coupled with solar auxiliary heat[J]. Journal of energy storage, 2021, 42: 103089.
[7] DENG B F, FANG J K, HUI Q, et al.Optimal scheduling for combined district heating and power systems using subsidy strategies[J]. CSEE journal of power and energy systems, 2019, 5(3): 399-408.
[8] KHATIBI M, BENDTSEN J D, STOUSTRUP J, et al.Exploiting power-to-heat assets in district heating networks to regulate electric power network[J]. IEEE transactions on smart grid, 2021, 12(3): 2048-2059.
[9] XU X D, MING W L, ZHOU Y, et al.Unlock the flexibility of combined heat and power for frequency response by coordinative control with batteries[J]. IEEE transactions on industrial informatics, 2021, 17(5): 3209-3219.
[10] DOU C X, ZHOU X H, ZHANG T F, et al.Economic optimization dispatching strategy of microgrid for promoting photoelectric consumption considering cogeneration and demand response[J]. Journal of modern power systems and clean energy, 2020, 8(3): 557-563.
[11] ALABI T M, LU L, YANG Z Y.Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy[J]. Applied energy, 2022, 314: 118997.
[12] LIU C R, WANG H Q, WANG Z Y, et al.Research on life cycle low carbon optimization method of multi-energy complementary distributed energy system: a review[J]. Journal of cleaner production, 2022, 336: 130380.
[13] ZHOU Y F, HU W, MIN Y, et al.Integrated power and heat dispatch considering available reserve of combined heat and power units[J]. IEEE transactions on sustainable energy, 2019, 10(3): 1300-1310.
[14] GARMABDARI R, MOGHIMI M, YANG F, et al.Multi-objective optimisation and planning of grid-connected cogeneration systems in presence of grid power fluctuations and energy storage dynamics[J]. Energy, 2020, 212: 118589.
[15] XU D, WU Q W, ZHOU B, et al.Distributed multi-energy operation of coupled electricity, heating, and natural gas networks[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2457-2469.
[16] MORADI-DALVAND M, NAZARI-HERIS M, MOHAMMADI-IVATLOO B, et al.A two-stage mathematical programming approach for the solution of combined heat and power economic dispatch[J]. IEEE systems journal, 2020, 14(2): 2873-2881.
[17] RIGO-MARIANI R, ZHANG C, ROMAGNOLI A, et al.A combined cycle gas turbine model for heat and power dispatch subject to grid constraints[J]. IEEE transactions on sustainable energy, 2020, 11(1): 448-456.
[18] DOLATABADI A, JADIDBONAB M, MOHAMMADI-IVATLOO B.Short-term scheduling strategy for wind-based energy hub: a hybrid stochastic/IGDT approach[J]. IEEE transactions on sustainable energy, 2019, 10(1): 438-448.
[19] HE Y X, LYU Y, CHE Y R.Operational optimization of combined cooling, heat and power system based on information gap decision theory method considering probability distribution[J]. Sustainable energy technologies and assessments, 2022, 51: 101977.
[20] DOU C X, ZHOU X H, ZHANG T F, et al.Economic optimization dispatching strategy of microgrid for promoting photoelectric consumption considering cogeneration and demand response[J]. Journal of modern power systems and clean energy, 2020, 8(3): 557-563.
[21] LIU G, QIN Z F, DIAO T Y, et al.Low carbon economic dispatch of biogas-wind-solar renewable energy system based on robust stochastic optimization[J]. International journal of electrical power & energy systems, 2022, 139: 108069.
[22] JIANG Y B, WAN C, BOTTERUD A, et al.Efficient robust scheduling of integrated electricity and heat systems: a direct constraint tightening approach[J]. IEEE transactions on smart grid, 2021, 12(4): 3016-3029.
[23] SHAHEEN A M, GINIDI A R, EL-SEHIEMY R A, et al. Optimal economic power and heat dispatch in Cogeneration Systems including wind power[J]. Energy, 2021, 225: 120263.
[24] ZHANG G H, MA X J, WANG L, et al.Elite archive-assisted adaptive memetic algorithm for a realistic hybrid differentiation flowshop scheduling problem[J]. IEEE transactions on evolutionary computation, 2022, 26(1): 100-114.
[25] WANG J J, WANG L.A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling[J]. IEEE transactions on emerging topics in computational intelligence, 2021, 5(6): 947-961.
[26] ZHAO Z Y, LIU S X, ZHOU M C, et al.Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem[J]. IEEE/CAA journal of automatica sinica, 2021, 8(6): 1199-1209.
[27] GE Y F, YU W J, CAO J L, et al.Distributed memetic algorithm for outsourced database fragmentation[J]. IEEE transactions on cybernetics, 2021, 51(10): 4808-4821.
[28] GUAN B X, ZHAO Y H, YIN Y, et al.Detecting disease-associated SNP-SNP interactions using progressive screening memetic algorithm[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(2): 878-887.
[29] LI Z C, TANG L X, LIU J Y.A memetic algorithm based on probability learning for solving the multidimensional knapsack problem[J]. IEEE transactions on cybernetics, 2022, 52(4): 2284-2299.
[30] HUANG T, GONG Y J, KWONG S, et al.A niching memetic algorithm for multi-solution traveling salesman problem[J]. IEEE transactions on evolutionary computation, 2020, 24(3): 508-522.
[31] 蔡国伟, 西禹霏, 杨德友. 基于SCA分解法的含电热泵和储热装置的热电联调[J]. 太阳能学报, 2019, 40(12): 3401-3408.
CAI G W, XI Y F, YANG D Y.Decomposition solution for combined heat and power disatch cotaining EHP and TES through SCA algorithm[J]. Acta energiae solaris sinica, 2019, 40(12): 3401-3408.
[32] WANG D S, TAN D P, LIU L.Particle swarm optimization algorithm: an overview[J]. Soft computing, 2018, 22(2): 387-408.
[33] PANG X F, ZHANG X, LIU W, et al.Optimal scheduling of cogeneration system with heat storage device based on artificial bee colony algorithm[J]. Electronics, 2022, 11(11): 1725.
[34] YU H, LI J Q, CHEN X L, et al.An improved multi-objective imperialist competitive algorithm for surgical case scheduling problem with switching and preparation times[J]. Cluster computing, 2022, 25(5): 3591-3616.

基金

辽宁省应用基础研究项目(2022JH2/101300134); 国家自然科学基金(52007124); 辽宁省“揭榜挂帅”项目(2021JH1/10400009); 沈阳市科技计划项目(20-203-5-51)

PDF(1884 KB)

Accesses

Citation

Detail

段落导航
相关文章

/