大型海上风电场集电系统拓扑优化研究

何佳, 董礼, 葛铭纬

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 591-596.

PDF(1556 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1556 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 591-596. DOI: 10.19912/j.0254-0096.tynxb.2024-0245

大型海上风电场集电系统拓扑优化研究

  • 何佳1, 董礼2, 葛铭纬1
作者信息 +

TOPOLOGY OPTIMIZATION OF LARGE-SCALE OFFSHORE WIND FARM POWER COLLECTION SYSTEM

  • He Jia1, Dong Li2, Ge Mingwei1
Author information +
文章历史 +

摘要

通过改进传统混合整数线性规划模型约束条件,并引入可选路径预缩减和动态生成电缆不交叉约束,提出一种适用于大型海上风电场的集电系统路径规划方法。案例测试显示,优化后的风电场集电线路成本降低7.27%,改进后的模型可大幅减小存储空间需求和求解时间,计算效率得到极大提升。

Abstract

By improving the constraint conditions of the traditional mixed-linear integer programming model and introducing optional path pre-reduction and dynamically generated non-crossing constraints of cables, a path planning method for the collector system suitable for large-scale offshore wind farms is proposed. The case test shows that the cost of the optimized wind farm collection line is reduced by 7.27%. The improved model significantly reduces the storage space requirement and solution time, and greatly enhances the computational efficiency.

关键词

海上风电场 / 拓扑优化 / 混合整数线性模型 / 电缆敷设 / 路径规划 / 数学规划

Key words

offshore wind farms / topology optimization / mixed-integer linear programming / electric cable laying / path planning / mathematical programming

引用本文

导出引用
何佳, 董礼, 葛铭纬. 大型海上风电场集电系统拓扑优化研究[J]. 太阳能学报. 2025, 46(6): 591-596 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0245
He Jia, Dong Li, Ge Mingwei. TOPOLOGY OPTIMIZATION OF LARGE-SCALE OFFSHORE WIND FARM POWER COLLECTION SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 591-596 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0245
中图分类号: TM726.4   

参考文献

[1] 吕致为, 王永, 邓奇蓉. 考虑时间窗约束的海上风电机组运维方案优化[J]. 太阳能学报, 2022, 43(10): 177-185.
LYU Z W, WANG Y, DENG Q R.Optimization of maintenance scheme for offshore wind turbines considering time window[J]. Acta energiae solaris sinica, 2022, 43(10): 177-185.
[2] 孙瑞娟, 梁军, 王克文, 等. 海上风电集电系统研究综述[J]. 电力建设, 2021, 42(6): 105-115.
SUN R J, LIANG J, WANG K W, et al.Overview of offshore wind power collection system[J]. Electric power construction, 2021, 42(6): 105-115.
[3] 吴瑊, 米增强, 杨玉新, 等. 大型风机海上风电场集电系统拓扑优化[J]. 华北电力大学学报(自然科学版), 2023, 50(6): 31-39.
WU J, MI Z Q, YANG Y X, et al.Topology optimization of offshore wind farm power collection system with large wind turbine[J]. Journal of North China Electric Power University (natural science edition), 2023, 50(6): 31-39.
[4] 王晓东, 王永浩, 刘颖明, 等. 海上风电场集电多分支线路故障区段定位方法[J]. 太阳能学报, 2023, 44(1): 163-170.
WANG X D, WANG Y H, LIU Y M, et al.Fault branch location for multi-branch collection lines of offshore wind farm[J]. Acta energiae solaris sinica, 2023, 44(1): 163-170.
[5] 林逸凡, 杨梓豪, 刘玉飞, 等. 中国沿海风电施工窗口期及功效分析[J]. 太阳能学报, 2023, 44(1): 273-280.
LIN Y F, YANG Z H, LIU Y F, et al.Analysis of weather window and construction efficiency for wind power development in offshore China[J]. Acta energiae solaris sinica, 2023, 44(1): 273-280.
[6] 曲名新, 邓少平, 翟学, 等. 考虑多升压站与障碍区的海上风电场集电系统拓扑优化[J]. 水利水电技术(中英文), 2022, 53(2): 184-193.
QU M X, DENG S P, ZHAI X, et al.Multiple booster stations and obstacle areas-considered topology optimization of offshore wind farm power collection system[J]. Water resources and hydropower engineering, 2022, 53(2): 184-193.
[7] TAYLOR P, YUE H, CAMPOS-GAONA D, et al.Wind farm array cable layout optimisation for complex offshore sites: a decomposition based heuristic approach[J]. IET renewable power generation, 2023, 17(2): 243-259.
[8] 杨之俊. 基于粒子群算法的风电场集电系统优化设计[J]. 电测与仪表, 2016, 53(19): 113-118.
YANG Z J.Optimal design of power collection system for wind farm based on PSO algorithm[J]. Electrical measurement & instrumentation, 2016, 53(19): 113-118.
[9] 黄永生, 黄玲玲. 大型海上风电场风机微观选址与集电系统联合优化[J]. 电测与仪表, 2023, 60(12): 71-76, 89.
HUANG Y S, HUANG L L.Joint optimization of wind turbine micro-location and power collection system in offshore wind farm[J]. Electrical measurement & instrumentation, 2023, 60(12): 71-76, 89.
[10] 汪惟源, 乔颖, 窦飞, 等. 基于改进遗传算法的海上风电场集电系统拓扑优化[J]. 中国电力, 2019, 52(1): 63-68.
WANG W Y, QIAO Y, DOU F, et al.Optimization of offshore wind farm collector systems based on improved genetic algorithm[J]. Electric power, 2019, 52(1): 63-68.
[11] 蔡智超, 李星存, 吴庆华. 基于混合进化算法的海上风电场电缆路由方法[J]. 计算机仿真, 2023, 40(8): 120-124, 163.
CAI Z C, LI X C, WU Q H.Offshore wind farm cable routing method via hybrid evolutionary algorithm[J]. Computer simulation, 2023, 40(8): 120-124, 163.
[12] BAUER J, LYSGAARD J.The offshore wind farm array cable layout problem: a planar open vehicle routing problem[J]. Journal of the Operational Research Society, 2015, 66(3): 360-368.
[13] PÉREZ-RÚA J A, STOLPE M, DAS K, et al. Global optimization of offshore wind farm collection systems[J]. IEEE transactions on power systems, 2020, 35(3): 2256-2267.
[14] FISCHETTI M.On the optimized design of next-generation wind farms[J]. European journal of operational research, 2021, 291(3): 862-870.
[15] FISCHETTI M, PISINGER D.Optimizing wind farm cable routing considering power losses[J]. European journal of operational research, 2018, 270(3): 917-930.
[16] ŽARKOVIĆ S D, SHAYESTEH E, HILBER P.Onshore wind farm-Reliability centered cable routing[J]. Electric power systems research, 2021, 196: 107201.
[17] KRISTOFFERSEN J R, CHRISTIANSEN P.Horns rev offshore windfarm: its main controller and remote control system[J]. Wind engineering, 2003, 27(5): 351-359.

基金

国家自然科学基金(12172128)

PDF(1556 KB)

Accesses

Citation

Detail

段落导航
相关文章

/