利用湖北省某山区风电场2017年11月—2022年2月风电机组覆冰观测记录,结合高精度气象再分析资料,综合考虑风电机组的地形条件进行插值,得到每台风电机组的逐小时气象要素资料,在此基础上分析风电机组覆冰及消融阶段气象要素变化,得到风电机组覆冰时刻与消融时刻气象要素临界值。1)在风电机组覆冰阶段,气温呈持续下降状态,相对湿度呈持续上升状态,风速在风电机组覆冰前后无明显波动,持续平稳且风速较大。2)在风电机组覆冰阶段,气温呈持续上升状态,在覆冰消融时刻达到峰值;相对湿度呈持续下降状态,在覆冰消融时刻达到最低值;风速呈持续平稳状态,较覆冰阶段明显减小。3)风电机组覆冰的临界气象条件为轮毂高度处气温为0~2 ℃,风速为4~6 m/s,微量降水或无降水,相对湿度95%以上;风电机组覆冰消融的临界气象条件为轮毂高度处气温为4 ℃以上,风速为2~4 m/s,相对湿度小于90%。
Abstract
Based on the wind turbine icing observation records from November 2017 to February 2022 in a mountain wind farm in Hubei Province, and combined with high-precision meteorological reanalysis data, interpolation is carried out by comprehensively considering the terrain conditions of wind turbines, on the basis of the hourly meteorological data of each fan, the changes of the meteorological factors during the icing and melting stages are analyzed, and the critical values of the meteorological factors at the icing and melting stages are obtained. 1) during the icing stage of the fan, the air temperature decreased continuously, the relative humidity increased continuously, and the wind speed did not fluctuate too much before and after the icing stage. 2) during the icing stage of the fan, the air temperature rises continuously and reaches the peak at the time of ice melting; the relative humidity decreases continuously and reaches the lowest value at the time of ice melting; the wind speed remains stable and significantly decreases compared to the icing stage. 3) the critical meteorological conditions for the ice coating of the fan are that the air temperature at the height of the wheel hub is about 0-2 ℃, the wind speed is in the range of 4-6 m/s, there is little or no precipitation, and the relative humidity is over 95%; The critical meteorological conditions for ice melting of the fan are that the air temperature is above 4 ℃ at the height of the wheel hub, the wind speed is in the range of 2-4 m/s, and the relative humidity is less than 90%.
关键词
风电场 /
风电机组 /
覆冰 /
气象 /
临界值
Key words
wind farm /
wind turbines /
icing /
meteorology /
critical value
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢斯尘, 王泽雷, 于夕朦, 等. 老旧风场"以大代小"的市场分析与政策建议[J]. 能源, 2024,3:60-67.
XIE S C, WANG Z L, YU X M, et al.Market analysis and policy recommendations on replacing small with large wind farms in old wind farms[J]. Energy, 2024, 3: 60-67
[2] 龚妙, 李录平, 刘瑞, 等. 风力机叶片覆冰状态监测基准值与分级诊断标准研究[J]. 太阳能学报, 2021, 42(2): 172-178.
GONG M, LI L P, LIU R, et al.Research on ice accretion conditon monitoring reference value and grading diagnosis standard of wind turbine blades[J]. Acta energiae solaris sinica, 2021, 42(2): 172-178.
[3] ETEMADDAR M, HANSEN M O L, MOAN T. Wind turbine aerodynamic response under atmospheric icing conditions[J]. Wind energy, 2014, 17(2): 241-265.
[4] SHU L C, QIU G, HU Q, et al.Numerical and experimental investigation of threshold de-icing heat flux of wind turbine[J]. Journal of wind engineering and industrial aerodynamics, 2018, 174: 296-302.
[5] 任晓凯. 小型风力发电机叶片覆冰的气动力学特性研究[D]. 重庆: 重庆大学, 2016.
REN X K.Numerical study and test of icing on small wind turbine blades[D]. Chongqing: Chongqing University, 2016.
[6] 胡琴, 王欢, 邱刚, 等. 风力发电机叶片覆冰量化分析及其应用[J]. 电工技术学报, 2022, 37(21): 5607-5616.
HU Q, WANG H, QIU G, et al.Quantitative analysis of wind turbine blade icing and its application[J]. Transactions of China electrotechnical society, 2022, 37(21): 5607-5616.
[7] BEAUGENDRE H, MORENCY F, HABASHI W G.Development of a second generation in-flight icing simulation code[J]. Journal of fluids engineering, 2006, 128(2): 378-387.
[8] SON C, KIM T.Development of an icing simulation code for rotating wind turbines[J]. Journal of wind engineering and industrial aerodynamics, 2020, 203: 104239.
[9] 蒋传鸿. 风力机结冰翼型的气动性能分析及优化设计[D]. 重庆: 重庆大学, 2014.
JIANG C H.Aerodynamic performance analysis and optimum design of wind turbine icing airfoil[D]. Chongqing: Chongqing University, 2014.
[10] 梁健. 风力机叶片覆冰预测模型研究[D]. 重庆:重庆大学, 2017.
LIANG J.Study on prediction model of wind turbine blade icing [D] . Chongqing: Chongqing University, 2017.
[11] 邓晓湖, 卢绪祥, 李录平, 等. 水平轴风力机叶片翼型结冰的数值模拟[J]. 能源技术, 2010, 31(5): 266-271.
DENG X H, LU X X, LI L P, et al.Numerical simulation of airfoil ice accretion process on horizontal-axis wind turbine blade[J]. Energy technology, 2010, 31(5): 266-271.
[12] 焦伟卫. 风机叶片的覆冰机理与模拟分析[J]. 电子技术, 2023, 52(3): 236-237.
JIAO W W.Analysis of ice covering mechanism and simulation of fan blades[J]. Electronic technology, 2023, 52(3): 236-237.
[13] 刘红祥, 闯振菊, 刘社文, 等. 风电机组叶片结冰机理和电热除冰分析[J]. 船舶工程, 2023, 45(12): 171-178.
LIU H X, CHUANG Z J, LIU S W, et al.Ice formation mechanism and electric deicing analysis of wind turbine blades[J]. Ship engineering, 2023, 45(12): 171-178.
[14] 李少峰. 风力机叶片覆冰融冰装置设计与优化研究[D]. 沈阳: 沈阳工业大学, 2023.
LI S F.Design and optimization of wind turbine blade icing and ice-melting device[D]. Shenyang: Shenyang University of Technology, 2023.
[15] 于周, 舒立春, 胡琴, 等. 风机叶片气动脉冲除冰结构脱冰计算模型及试验验证[J]. 电工技术学报, 2023, 38(13): 3630-3639.
YU Z, SHU L C, HU Q, et al.De-icing calculation model of pneumatie impulse de-icing structure for wind turbine blades and experiment verification[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3630-3639.
[16] 朱浩楠, 刘晓冉, 李永华, 等. 考虑地形的空间插值算法在复杂下垫面地区气温和降水精细化插值的评估[J]. 气象, 2020, 46(5): 655-665.
ZHU H N, LIU X R, LI Y H, et al.Evaluation of terrain-considered spatial interpolation methods on temperature and precipitation in complex underlying surface region[J]. Meteorological monthly, 2020, 46(5): 655-665.
[17] 于东玮, 司广全, 孔祥逸, 等. 风机叶片覆冰机理与预测分析[J]. 计算力学学报, 2021, 38(3): 327-336.
YU D W, SI G Q, KONG X Y, et al.Icing mechanism and prediction analysis for wind turbine blades[J]. Chinese journal of computational mechanics, 2021, 38(3): 327-336.
基金
湖北省自然科学基金联合基金项目(2022CFD131)