针对液压蓄能式波能装置由于蓄能器的解耦作用无法最大功率跟踪,不可控整流模式液压发电机组频繁启停、功率不可控、无法自适应跟踪来波功率等问题,提出基于高频整流的功率跟踪控制方法。建立完整的液压蓄能发电系统以及压力负载数学模型,通过高频整流器控制发电机转速,改善液压发电系统输出特性,实现液压发电机组在功率变化范围内自动跟踪来波功率。仿真试验结果表明,液压发电机组马达输入流量能自动跟踪液压缸的输出流量,系统压力自动匹配来波功率。因此,功率跟踪控制方法可改善波能装置液压发电机组特性,减少启停,实现功率跟踪与自适应负载调节,有利于推进液压蓄能式波能装置研究。
Abstract
The hydraulic energy storage wave energy converter is unable to achieve maximum power point tracking due to the decoupling effect of accumulators. In addition, the hydraulic generator sets with uncontrollable rectification mode result in the frequent starts and stops, uncontrollable power output, and failure to adaptively track the incoming wave power. Therefore, a power tracking control method based on high-frequency rectification is proposed. The mathematical models of the hydraulic energy storage power generation system and pressure load are established. On this basis, the generator speed is controlled by a high-frequency rectifier, thereby improving the output characteristics of the hydraulic power generation system. It achieves automatic tracking of the incoming wave power by the hydraulic generator set within the power variation range. The simulation test results indicate that the input flow of the hydraulic motor rate can automatically track the output flow rate of the hydraulic cylinders, and the system pressure can automatically match the incoming wave power. Therefore, the power tracking control method enhances the characteristics of the hydraulic generator set of the wave energy converter and reduces the starts and stops, thereby achieving both wave power tracking and adaptive load regulation. It is beneficial in promoting the further research on the hydraulic energy storage wave energy converter.
关键词
波能装置 /
功率控制 /
流量 /
液压发电机组 /
功率跟踪 /
负载匹配
Key words
wave energy converter /
power control /
flow rate /
hydraulic generator set /
power tracking /
load matching
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈佳, 兰飞, 郭昊霖, 等. 波浪能发电控制技术研究综述[J]. 电力自动化设备, 2023, 43(6): 124-136.
CHEN J, LAN F, GUO H L, et al.Review on wave energy power generation control technology[J]. Electric power automation equipment, 2023, 43(6): 124-136.
[2] JUSOH M A, IBRAHIM M Z, DAUD M Z, et al.Hydraulic power take-off concepts for wave energy conversion system: a review[J]. Energies, 2019, 12(23): 4510.
[3] BURHANUDIN J, ABU HASIM A S, ISHAK A M, et al. A review of power electronics for nearshore wave energy converter applications[J]. IEEE access, 2022, 10: 16670-16680.
[4] XU X Z, JIA L M, JIANG S Y, et al.Mover structure optimization and performance improvement for halbach consequent-pole PM synchronous linear motors with flux barrier[J]. Journal of magnetism and magnetic materials, 2024, 591: 171692.
[5] TAN J, WANG X Z, POLINDER H, et al.Downsizing the linear PM generator in wave energy conversion for improved economic feasibility[J]. Journal of marine science and engineering, 2022, 10(9): 1316.
[6] BARUA A, SALAUDDIN RASEL M.Advances and challenges in ocean wave energy harvesting[J]. Sustainable energy technologies and assessments, 2024, 61: 103599.
[7] AGARWAL A, IYER V M, ANURAG A, et al.Adaptive control of a hybrid energy storage system for wave energy conversion application[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). Baltimore, MD, USA, 2019: 4994-5001.
[8] PENALBA M, RINGWOOD J V.A high-fidelity wave-to-wire model for wave energy converters[J]. Renewable energy, 2019, 134: 367-378.
[9] GASPAR J F, KAMARLOUEI M, SINHA A, et al.Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters[J]. Renewable energy, 2016, 97: 769-783.
[10] LEON-QUIROGA J A, BACELLI G, FORBUSH D D, et al. An efficient and effective WEC power take-off system[J]. IEEE transactions on sustainable energy, 2023, 14(3): 1526-1539.
[11] YUE X H, LIU J Y, MA S H, et al.Speed-and-pressure combined control for the CPHPTO of an inverse pendulum wave energy converter[J]. IOP conference series: earth and environmental science, 2023, 1171(1): 012033.
[12] 王振鹏, 游亚戈, 盛松伟, 等. 波浪能发电装置中液压自治控制系统实海况试验[J]. 太阳能学报, 2019, 48(7): 2085-2090.
WANG Z P, YOU Y G, SHENG S W, et al.Open sea tests of hydraulic autonomous control system in wave energy convertor[J]. Acta energiae solaris sinica, 2019, 48(7): 2085-2090.
[13] 李强, 郭毅, 王项南, 等. 液压式波浪能装置发电控制策略试验研究[J]. 太阳能学报, 2024, 45(1): 410-414.
LI Q, GUO Y, WANG X N, et al.Experimental study on power generation control strategy of hydraulic wave energy converter[J]. Acta energiae solaris sinica, 2024, 45(1): 410-414.
[14] GENG D Z, ZHENG Y, CHEN Q J, et al.Novel hydraulic mechanism-based output power regulation for the wave energy converter[J]. Applied ocean research, 2021, 110: 102587.
[15] AMINI E, MEHDIPOUR H, FARAGGIANA E, et al.Optimization of hydraulic power take-off system settings for point absorber wave energy converter[J]. Renewable energy, 2022, 194: 938-954.
[16] LI Y, HUANG L, CHEN M S, et al.Maximum power point tracking control based on inertia force for underwater direct-drive wave energy converter[J]. Renewable energy, 2023, 215: 118964.
[17] MURAI M, LI Q, FUNADA J.Study on power generation of single Point Absorber Wave Energy Converters (PA-WECs) and arrays of PA-WECs[J]. Renewable energy, 2021, 164: 1121-1132.
[18] WANG K L, TIAN L F, YOU Y G, et al.Connection technology of HPTO type WECs and DC nano grid in island[J]. China ocean engineering, 2016, 30(4): 581-590.
[19] 陈坤鑫, 盛松伟, 姜家强, 等. 千瓦级小型液压式波浪能装置能量转换系统研究[J]. 太阳能学报, 2022, 43(7): 471-476.
CHEN K X, SHENG S W, JIANG J Q, et al.Research on energy conversion system of kilowatt small hydraulic wave energy device[J]. Acta energiae solaris sinica, 2022, 43(7): 471-476.
[20] WANG K L, SHENG S W, ZHANG Y Q, et al.Principle and control strategy of pulse width modulation rectifier for hydraulic power generation system[J]. Renewable energy, 2019, 135: 1200-1206.
基金
广东省重点领域研发计划(2021B0202070002); 2024年广东省海洋经济发展专项资助(粤自然资合GDNRC[2024]21号); 广州市基础研究计划基础与应用基础研究(202201010434); 三亚崖州湾科技城科研项目(SKJC-2020-01-007)