居住建筑柔性用能负荷关联特性及优化调控研究

罗西, 李停停

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 385-392.

PDF(2369 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2369 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 385-392. DOI: 10.19912/j.0254-0096.tynxb.2024-0283

居住建筑柔性用能负荷关联特性及优化调控研究

  • 罗西1,2, 李停停1
作者信息 +

CORRELATION CHARACTERISTICS AND OPTIMAL REGULATION OF FLEXIBLE ENERGY CONSUMPTION LOAD IN RESIDENTIAL BUILDINGS

  • Luo Xi1,2, Li Tingting1
Author information +
文章历史 +

摘要

针对现有居住建筑柔性用能负荷优化调控研究未充分考虑不同设备在使用时间规律上因功能互补性与用户习惯性而具有的关联特性,导致优化调控的计算值和实际值之间存在较大偏差的问题,提出一种考虑用能负荷关联的居住建筑柔性用能负荷优化调控模型,在仅考虑时间重叠性负荷关联(情景1)、仅考虑时间顺序性负荷关联(情景2)和同时考虑两种负荷关联(情景3)3种不同情景下,采用CPLEX求解器计算求解以经济性为目标的典型居住建筑柔性用能负荷优化调控模型。结果表明,在具有关联特性的常见居住建筑负荷集合内,炊事活动负荷集合内的各类负荷之间具有时间重叠性和时间顺序性两种关联特性,而生活热水负荷集合和洗衣活动负荷集合内的各类负荷则只包含时间顺序性关联特性。另外,与不考虑负荷关联的柔性用能负荷优化调控结果相比,情景1、情景2和情景3下用户用电成本增加比例分别为0.00%、7.57%、7.57%,由此可知时间顺序性负荷关联特性因对柔性用能负荷优化调控结果影响较大而不可忽略。

Abstract

In view of the problem that the existing researchs on the optimal scheduling of flexible load in residential buildings does not fully consider the correlation characteristics of different devices due to functional complementarity and user habituality in the use time law, resulting in a large deviation between the calculated value and the actual value of optimization scheduling, a model considering load correlation is proposed for the optimal scheduling of flexible loads in residential buildings. The model, aimed at economic efficiency, was then solved using the CPLEX solver under three different scenarios: that consideriing only temporal overlapping load correlation (scenario 1); that considering temporal order load correlation (scenario 2); and that considering both types of load correlation simultaneously (scenario 3). The results show that: in the load set of common residential buildings with correlation characteristics, the various loads in the cooking load set have temporal overlapping and temporal order load correlations, while the various loads in the domestic hot water load set and the laundry load set only contain the temporal order load correlation. In addition,compared with the results of flexible load optimization scheduling without considering load correlation, the increase proportions of users' electricity costs in scenarios 1, 2 and 3 are 0.00%, 7.57% and 7.57%, respectively, which shows that the timporal order load correlation characteristics cannot be ignored because they have a great influence on the optimal scheduling results of flexible load.

关键词

需求侧管理 / 关联规则 / 优化调控 / 柔性负荷 / CPLEX

Key words

demand-side management / correlation rules / optimal regulation / flexible load / CPLEX

引用本文

导出引用
罗西, 李停停. 居住建筑柔性用能负荷关联特性及优化调控研究[J]. 太阳能学报. 2025, 46(6): 385-392 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0283
Luo Xi, Li Tingting. CORRELATION CHARACTERISTICS AND OPTIMAL REGULATION OF FLEXIBLE ENERGY CONSUMPTION LOAD IN RESIDENTIAL BUILDINGS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 385-392 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0283
中图分类号: TK01   

参考文献

[1] 安源, 苏瑞, 郑申印, 等. 计及碳交易和源-荷侧资源的综合能源系统低碳经济优化[J]. 太阳能学报, 2023, 44(11): 547-555.
AN Y, SU R, ZHENG S Y, et al.Low carbon economic optimization of integrated energy system considering carbon trading and source-load side resources[J]. Acta energiae solaris sinica, 2023, 44(11): 547-555.
[2] 刘艳峰, 杨燕子, 罗西. 关中农村不同类型家庭夏季柔性用能负荷多目标优化调度研究[J]. 太阳能学报, 2023, 44(8): 110-118.
LIU Y F, YANG Y Z, LUO X.Multi-objective optimization scheduling model of flexible energy consumption load in summer for different types of rural households in Guanzhong plain[J]. Acta energiae solaris sinica, 2023, 44(8): 110-118.
[3] 罗西, 赵天亮, 刘艳峰, 等. 中国太阳能富集区农村居住社区可平移负荷分组聚合与特性评价[J]. 太阳能学报, 2023, 44(12): 1-8.
LUO X, ZHAO T L, LIU Y F, et al.Shiftable load groupaggregation and characteristic evaluation in China's rural residential communities in solar energyabundantarea[J]. Acta energiae solaris sinica, 2023, 44(12): 1-8.
[4] HAIDER H T, SEE O H, ELMENREICH W.A review of residential demand response of smart grid[J]. Renewable and sustainable energy reviews, 2016, 59: 166-178.
[5] NAN S B, ZHOU M, LI G Y.Optimal residential community demand response scheduling in smart grid[J]. Applied energy, 2018, 210: 1280-1289.
[6] LUO Z Y, PENG J Q, HU M M, et al.Multi-objective optimal dispatch of household flexible loads based on their real-life operating characteristics and energy-related occupant behavior[J]. Building simulation, 2023, 16(11): 2005-2025.
[7] HENGGELER ANTUNES C, ALVES M J, SOARES I.A comprehensive and modular set of appliance operation MILP models for demand response optimization[J]. Applied energy, 2022, 320: 119142.
[8] SHARDA S, SINGH M, SHARMA K.A complete consumer behaviour learning model for real-time demand response implementation in smart grid[J]. Applied intelligence, 2022, 52(1): 835-845.
[9] 龙伟. 基于智能电表的数据分析[D]. 深圳: 深圳大学, 2017.
LONG W.Data analysis based on smart meter[D]. Shenzhen: Shenzhen University, 2017.
[10] 郭晓利, 于阳. 基于云计算的家庭智能用电策略[J]. 电力系统自动化, 2015, 39(17): 114-119, 133.
GUO X L, YU Y.A residential smart power utilization strategy based on cloud computing[J]. Automation of electric power systems, 2015, 39(17): 114-119, 133.
[11] 王孝慈, 董树锋, 王莉, 等. 基于电器状态关联分析的民可平移负荷辨识[J]. 电工技术学报, 2020, 35(23): 4961-4970.
WANG X C, DONG S F, WANG L, et al.Resident shiftable loads monitoring based on load states set correlation analysis[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4961-4970.
[12] 孙毅, 刘迪, 李彬, 等. 基于家庭用电负荷关联度的实时优化策略[J]. 电网技术, 2016, 40(6): 1825-1829.
SUN Y, LIU D, LI B, et al.Research on real-time optimization strategy based on correlation of household electrical load[J]. Power system technology, 2016, 40(6): 1825-1829.
[13] 曲朝阳, 韩晶, 曲楠, 等. 考虑家电关联与舒适性相结合的用电行为多目标优化模型[J]. 电力系统自动化, 2018, 42(2): 50-57.
QU Y, HAN J, QU N, et al.Multi-objective optimization model of electricity consumption behavior considering combination of household appliance correlation and comfort[J]. Automation of electric power systems, 2018, 42(2): 50-57.
[14] 赫卫国, 夏俊荣, 刘志明, 等. 考虑用户缴费满意度与用电舒适度的用电优化策略[J]. 电力需求侧管理, 2020, 22(1): 69-74.
HE W G, XIA J R, LIU Z M, et al.Power optimal strategy considering user-charging satisfaction and user comfort[J]. Power demand side management, 2020, 22(1): 69-74.
[15] HAIDER H T, MUHSEN D H, AL-NIDAWI Y M, et al. A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids[J]. Energy, 2022, 254: 124360.
[16] MOTA B, FARIA P, VALE Z.Residential load shifting in demand response events for bill reduction using a genetic algorithm[J]. Energy, 2022, 260: 124978.
[17] LUO F J, KONG W C, RANZI G, et al.Optimal home energy management system with demand charge tariff and appliance operational dependencies[J]. IEEE transactions on smart grid, 2020, 11(1): 4-14.
[18] JIANG Z H, PENG J Q, YIN R X, et al.Stochastic modelling of flexible load characteristics of split-type air conditioners using grey-box modelling and random forest method[J]. Energy and buildings, 2022, 273: 112370.
[19] 杨明, 王元超, 向东, 等. 智能电网中的家庭用电系统建模与优化分析[J]. 电力需求侧管理, 2017, 19(4): 6-10.
YANG M, WANG Y C, XIANG D, et al.Model and optimization analysis for household electricity consumption system in smart grid[J]. Power demand side management, 2017, 19(4): 6-10.

基金

国家自然科学基金面上项目(52378109); 陕西省创新能力支撑计划-青年科技新星项目(2023KJXX-043); 陕西省科协青年人才托举计划(20220425)

PDF(2369 KB)

Accesses

Citation

Detail

段落导航
相关文章

/