The material properties of an ultrathin barium fluoride (BaFx) thin film prepared by electron beam evaporation method are investigated and applied as a novel, undoped selective contact transport material for crystalline silicon heterojunction batteries that transport electrons while blocking holes. Ultraviolet photoelectron spectroscopy (UPS) tests show that the BaFx/Al interface has a work function of 2.55 eV, which is lower than that of aluminum itself (4.26 eV), enabling a selective transport function for electrons. The addition of BaFx leads to the formation of an ohmic contact between the aluminum electrodes and the crystalline silicon, and achieving a low contact resistivity of 23.98 mΩ·cm2. The use of this heterostructure as a doping-free whole backside ohmic contact for lightly doped n-type monocrystalline silicon solar cells leads to an increase in both the cell's fill factor and short-circuit current density, and ultimately achieves an increase in the cell's absolute energy conversion efficiency of 2.53%.
Di Chong, Li Wenhao, Chen Jingwei, Ding Yang, Wei Deyuan, Xu Ying.
RESEARCH ON BaFx ELECTRON-SELETIVE CONTACT IN CRYSTALLINE SILLICON SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 245-250 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0284
中图分类号:
TM615
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WANG G Y, YUE Z Y, LIU W Z, et al.Perovskite-based electron-selective contacts for silicon solar cells[J]. Solar RRL, 2022, 6(10): 2200581. [2] IMRAN H, ABDOLKADER T M, BUTT N Z.Carrier-selective NiO/Si and TiO2/Si contacts for silicon heterojunction solar cells[J]. IEEE transactions on electron devices, 2016, 63(9): 3584-3590. [3] ALLEN T G, BULLOCK J, YANG X B, et al.Passivating contacts for crystalline silicon solar cells[J]. Nature energy, 2019, 4: 914-928. [4] GAO P Q, YANG Z H, HE J, et al.Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives[J]. Advanced science, 2017, 5(3): 1700547. [5] MELSKENS J, VAN DE LOO B W H, MACCO B, et al. Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects[J]. IEEE journal of photovoltaics, 2018, 8(2): 373-388. [6] BULLOCK J, ZHENG P T, JEANGROS Q, et al.Lithium fluoride based electron contacts for high efficiency n-type crystalline silicon solar cells[J]. Advanced energy materials, 2016, 6(14): 1600241. [7] WAN Y M, SAMUNDSETT C, BULLOCK J, et al.Magnesium fluoride electron-selective contacts for crystalline silicon solar cells[J]. ACS applied materials & interfaces, 2016, 8(23): 14671-14677. [8] WANG Z L, YANG Y, ZHANG L F, et al.Modulation-doped ZnO as high performance electron-selective layer for efficient silicon heterojunction solar cells[J]. Nano energy, 2018, 54: 99-105. [9] YANG X B, BI Q Y, ALI H, et al.High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells[J]. Advanced materials, 2016, 28(28): 5891-5897. [10] WAN Y M, SAMUNDSETT C, YAN D, et al.A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells[J]. ACS applied materials & interfaces, 2016, 109(11): 113901. [11] ALLEN T G, BULLOCK J, ZHENG P T, et al.Calcium contacts to n-type crystalline silicon solar cells[J]. Progress in photovoltaics: research and applications, 2017, 25(7): 636-644. [12] BULLOCK J, HETTICK M, GEISSBÜHLER J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts[J]. Nature energy, 2016, 1(3): 15031. [13] CHO J, MELSKENS J, PAYO M R, et al.Performance and thermal stability of an a-Si:H/TiOx/Yb stack as an electron-selective contact in silicon heterojunction solar cells[J]. ACS applied energy materials, 2019, 2(2): 1393-1404. [14] MACCO B, BLACK L E, MELSKENS J, et al.Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells[J]. Solar energy materials and solar cells, 2018, 184: 98-104. [15] PERKİTEL İ, ALTUNTAS İ, DEMİR İ. The effect of Si (111) substrate surface cleaning on growth rate and crystal quality of MOVPE grown AlN[J]. Gazi University journal of science, 2022, 35(1): 281-291. [16] CHO J, NAWAL N, HADIPOUR A, et al.Interface analysis and intrinsic thermal stability of MoOx based hole-selective contacts for silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2019, 201: 110074. [17] 孙彪, 丁阳, 黄志平, 等. 硅异质结太阳电池的TiCxOy电子选择性接触研究[J]. 太阳能学报, 2023, 44(7): 141-146. SUN B, DING Y, HUANG Z P, et al.Research on TiCxOy electron-seletive contacts for sillicon hetrojuction solar cells[J]. Acta energiae solaris sinica, 2023, 44(7): 141-146. [18] WANG W X, CAI L, MENG L X, et al.Cerous fluoride dopant-free electron-selective contact for crystalline silicon solar cells[J]. Physica status solidi (RRL)-rapid research letters, 2021, 15(12): 2100135. [19] WANG W, CAI L, MENG L, et al.Stable dopant-free electron-selective contact for silicon solar cells[J]. ACS applied energy materials, 2023, 6(21): 11234-11241. [20] 陈筑, 徐林. 晶体硅太阳电池接触电阻测量方法[J]. 太阳能学报, 2014, 35(5): 750-755. CHEN Z, XU L.The measurement method of contact resistance on crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2014, 35(5): 750-755. [21] DING Y, HUANG Z P, DI C, et al.Self-assembled monolayer Ti3C2Tx MXene as electron selective heterocontact for crystalline silicon solar cells[J]. Solar RRL, 2023, 7(14): 2300250. [22] 王梦笑, 王光红, 赵雷, 等. 用于晶硅异质结太阳电池的透明导电薄膜研究进展[J]. 太阳能学报, 2023, 44(11): 16-22. WANG M X, WANG G H, ZHAO L, et al.Research progress of TCO films for silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2023, 44(11): 16-22.