基于SVMD-IDBO-KELM的短期光伏发电功率预测

吴艳娟, 荣旺, 郭玥, 叶技松

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 271-279.

PDF(1996 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1996 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 271-279. DOI: 10.19912/j.0254-0096.tynxb.2024-0292

基于SVMD-IDBO-KELM的短期光伏发电功率预测

  • 吴艳娟1~3, 荣旺1~3, 郭玥4, 叶技松1~3
作者信息 +

SHORT-TERM PHOTOVOLTATIC POWER FORECASTING BASED ON SVMD-IDBO-KELM

  • Wu Yanjuan1-3, Rong Wang1-3, Guo Yue4, Ye Jisong1-3
Author information +
文章历史 +

摘要

为提升不同天气条件下短期光伏发电功率预测的准确性,提出一种基于逐次变分模态分解(SVMD)和改进蜣螂优化算法(IDBO)优化核极限学习机(KELM)的预测模型。首先,通过高斯混合模型将数据集划分成不同天气类型下的相似日样本;其次,通过SVMD将数据集进行模态分解,得到相对平稳的子序列来改善数据质量;之后,运用IDBO对KELM进行改进,构建IDBO-KELM预测模型,并对不同子序列进行预测;最后,通过重组各子序列的预测值得到最终的预测结果。实验结果表明:该方法在3种不同的天气类型下均可取得良好的预测结果,并且比其他模型的预测精度更高。

Abstract

To improve the accuracy of short-term photovoltaic power forecasting under various weather conditions,this paper introduces a model that combines Successive Variational Mode Decomposition (SVMD) and an Improved Dung Beetle Optimization algorithm (IDBO) to optimize a Kernel Extreme Learning Machine (KELM). Firstly,the dataset is categorized into similar daily samples for different weather types using a Gaussian Mixture Model. Then,SVMD is applied to decompose the dataset into stable subsequences,thereby enhancing data quality. Next,IDBO is employed to optimize KELM,resulting in an IDBO-KELM prediction model specifically tailored for forecasting these subsequences. Finally,the predicted values from the subsequences are recombined to produce the final forecast. Experimental results demonstrate that this method performs well under three different weather conditions and exhibits superior accuracy when compared to other models.

关键词

光伏发电 / 预测分析 / 功率预测 / 核极限学习机 / 逐次变分模态分解 / 改进蜣螂优化算法

Key words

photovoltaic power generation / predictive analytics / power prediction / KELM / SVMD / IDBO

引用本文

导出引用
吴艳娟, 荣旺, 郭玥, 叶技松. 基于SVMD-IDBO-KELM的短期光伏发电功率预测[J]. 太阳能学报. 2025, 46(6): 271-279 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0292
Wu Yanjuan, Rong Wang, Guo Yue, Ye Jisong. SHORT-TERM PHOTOVOLTATIC POWER FORECASTING BASED ON SVMD-IDBO-KELM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 271-279 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0292
中图分类号: TM615   

参考文献

[1] LIMOUNI T, YAAGOUBI R, BOUZIANE K, et al.Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model[J]. Renewable energy, 2023, 205: 1010-1024.
[2] 刘明明. “双碳” 目标下可再生能源发展规划实施的用地困境及其纾解[J]. 中国人口·资源与环境, 2022, 32(12): 21-30.
LIU M M.Land use dilemmas of implementing renewable energy development plans under the ‘dual carbon' goals and their countermeasures[J]. China population, resources and environment, 2022, 32(12): 21-30.
[3] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[4] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[5] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[6] LIU L M, REN X Y, ZHANG F, et al.Dual-dimension Time-GGAN data augmentation method for improving the performance of deep learning models for PV power forecasting[J]. Energy reports, 2023, 9: 6419-6433.
[7] KEDDOUDA A, IHADDADENE R, BOUKHARI A, et al.Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions[J]. Energy conversion and management, 2023, 288: 117186.
[8] 黄泽, 毕贵红, 谢旭, 等. 基于MBI-PBI-ResNet的超短期光伏功率预测[J]. 电力系统保护与控制, 2024, 52(2): 165-176.
HUANG Z, BI G H, XIE X, et al.Ultra-short-term PV power prediction based on MBI-PBI-RESNET[J]. Power system protection and control, 2024, 52(2): 165-176.
[9] 王小杨, 罗多, 孙韵琳, 等. 基于ABC-SVM和PSO-RF的光伏微电网日发电功率组合预测方法研究[J]. 太阳能学报, 2020, 41(3): 177-183.
WANG X Y, LUO D, SUN Y L, et al.Combined forecasting method of daily photovoltaic power generation in microgrid based on ABC-SVM and PSO-RF models[J]. Acta energiae solaris sinica, 2020, 41(3): 177-183.
[10] LIN G Q, LI L L, TSENG M L, et al.An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation[J]. Journal of cleaner production, 2020, 253: 119966.
[11] 王瑞, 王英洲, 逯静. 基于ICEEMDAN-DTW和ISMA-WLSSVM的光伏发电功率预测[J]. 热能动力工程, 2023, 38(9): 131-140.
WANG R, WANG Y Z, LU J.Prediction of photovoltaic power generation based on ICEEMDAN-DTW and ISMA-WLSSVM[J]. Journal of engineering for thermal energy and power, 2023, 38(9): 131-140.
[12] LI N Q, LI L H, ZHANG F, et al.Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model[J]. Energy, 2023, 277: 127557.
[13] 陈龙, 张菁, 张昊立, 等. 基于VMD和射箭算法优化改进ELM的短期光伏发电预测[J]. 太阳能学报, 2023, 44(10): 135-141.
CHEN L, ZHANG J, ZHANG H L, et al.Short-term photovoltaic power generation forecast based on VMD-IAA-IHEKLM model[J]. Acta energiae solaris sinica, 2023, 44(10): 135-141.
[14] CHEN X, DING K, ZHANG J W, et al.Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM[J]. Energy, 2022, 248: 123574.
[15] JIA P Y, ZHANG H B, LIU X M, et al.Short-term photovoltaic power forecasting based on VMD and ISSA-GRU[J]. IEEE access, 2021, 9: 105939-105950.
[16] NAZARI M, SAKHAEI S M.Successive variational mode decomposition[J]. Signal processing, 2020, 174: 107610.
[17] XUE J K, SHEN B.Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The journal of supercomputing, 2023, 79(7): 7305-7336.
[18] 朱瑞金, 龚雪娇, 张娟娟. 基于EEMD-MPE-LSSVM的光伏发电功率预测[J]. 中国测试, 2021, 47(9): 158-162.
ZHU R J, GONG X J, ZHANG J J.Forecast of photovoltaic power generation based on EEMD-MPE-LSSVM[J]. China measurement & test, 2021, 47(9): 158-162.
[19] LIU Z F, LUO S F, TSENG M L, et al.Short-term photovoltaic power prediction on modal reconstruction: a novel hybrid model approach[J]. Sustainable energy technologies and assessments, 2021, 45: 101048.
[20] 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65.
ZHANG N, REN Q, LIU G C, et al.PV power short-term forecasting method based on VMD-GWO-ELMAN[J]. Electric power, 2022, 55(5): 57-65.
[21] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148.
SHANG L Q, LI H B, HOU Y D, et al.Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J]. Power system protection and control, 2022, 50(21): 138-148.

基金

天津市科技计划(22ZYCGSN00190); 2023年国家电网公司总部科技项目(5100-202356016A-1-1-Z); 校级教改项目(60102250/YJ2022)

PDF(1996 KB)

Accesses

Citation

Detail

段落导航
相关文章

/