Nano-SiC改性正十五烷相变胶囊的微流控制备及表征

李启慧, 尹帅, 吴自德, 徐旭栋, 闫珂瑾, 彭浩

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 173-183.

PDF(3558 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3558 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 173-183. DOI: 10.19912/j.0254-0096.tynxb.2024-0298

Nano-SiC改性正十五烷相变胶囊的微流控制备及表征

  • 李启慧, 尹帅, 吴自德, 徐旭栋, 闫珂瑾, 彭浩
作者信息 +

PREPARATION AND CHARACTERIZATION OF NANO-SiC MODIFIED N-PENTADECANE PHASE CHANGE CAPSULES BY MICROFLUIDIC CONTROL

  • Li Qihui, Yin Shuai, Wu Zide, Xu Xudong, Yan Kejin, Peng Hao
Author information +
文章历史 +

摘要

提出一种关于相变胶囊(EPCMs)的快捷微流控制备方法。通过浸入式共轴流毛细管微流控装置辅以紫外光固化制备C15/TMPTA EPCMs,并添加碳化硅对壳材进行导热改性处理。采用高速摄像机、扫描电子显微镜(SEM)、光学显微镜(OM)、傅里叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)、差式扫描量热仪(DSC)、热重分析仪(TGA)、激光导热仪(LFA)等表征手段探究复合液滴生成和EPCMs性能。结果表明:在所选择的流量参数范围内,复合液滴生成过程存在滴流、核心泄漏和射流3种现象。在滴流和射流现象下,均生成稳定的复合液滴;而当流量比(Qi/Qo)大于1.5、流量之和(Qtotal)小于160 μL/min时,核心液滴会发生泄漏,导致复合液滴无法正常生成。核心液滴及复合液滴尺寸随外相毛细数(Cao)的增大而减小,复合液滴生成频率随Cao的增大而增大。此外,在Qi/Qo为0.5、1.0、1.5,Qtotal为150 μL/min时,制备的EPCMs呈多核结构,具有高单分散性(变异系数(Cv)<4%),且尺寸可控,粒径为1.32~1.55 mm。添加质量分数为2%的纳米碳化硅进行改性,可提高EPCMs的封装率(提高16.17%)和热循环稳定性,在25次热循环后焓值仅降低1.19%。

Abstract

The paper proposes a rapid microfluidic fabrication method for encapsulated phase change materials (EPCMs). C15/TMPTA EPCMs are prepared using an immersed co-flowing capillary microfluidic device with UV-curing, supplemented by thermally conductive modification of the shell material with silicon carbide. Characterization techniques including high-speed cameras, SEM, OM, FT-IR, XRD, DSC, TGA and LFA are utilized to investigate the generation of compound droplets and the properties of EPCMs. The results show that within the selected range of flow rate parameters, the generation process of compound droplets exhibits three phenomena: dripping, core leakage and jetting. Under dripping and jetting phenomena, stable compound droplets are formed. However, when the flow rate ratio (Qi/Qo) is larger than 1.5 and the total flow rate (Qtotal) is less than 160 µL/min, the core droplet will leak, resulting in the inability to generate the composite droplet normally. The sizes of core and compound droplets decrease with an increase in the outer phase capillary number (Cao), while the frequency of compound droplet generation increases with Cao. Moreover, EPCMs prepared at Qi/Qo of 0.5, 1 and 1.5, with a Qtotal of 150 µL/min, exhibit a multi-core structure, high monodispersity (with a coefficient of variation (Cv) <4%) and controllable size, ranging from 1.32 to 1.55 mm in diameter. The addition of 2wt% nano silicon carbide for modification enhances the encapsulation efficiency of EPCMs (increased by 16.17%) and thermal cycling stability, with only a 1.19% decrease in enthalpy value after 25 thermal cycles.

关键词

微流控 / 相变胶囊 / 毛细管 / 液滴生成 / 辐射固化 / 纳米碳化硅

Key words

microfluidics / phase change capsule / capillary / droplet formation / radiation curing / nano silicon carbide

引用本文

导出引用
李启慧, 尹帅, 吴自德, 徐旭栋, 闫珂瑾, 彭浩. Nano-SiC改性正十五烷相变胶囊的微流控制备及表征[J]. 太阳能学报. 2025, 46(6): 173-183 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0298
Li Qihui, Yin Shuai, Wu Zide, Xu Xudong, Yan Kejin, Peng Hao. PREPARATION AND CHARACTERIZATION OF NANO-SiC MODIFIED N-PENTADECANE PHASE CHANGE CAPSULES BY MICROFLUIDIC CONTROL[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 173-183 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0298
中图分类号: TU522.1   

参考文献

[1] 张馨文, 翟鑫钰, 董辈辈, 等. 改性正十八烷相变纳米胶囊制备表征及在太阳能建筑中的应用[J]. 太阳能学报, 2023, 44(4): 290-298.
ZHANG X W, ZHAI X Y, DONG B B, et al.Preparation and characterization of modified SiO2/n-octadecane phase change nanocapusules and their application in solar building[J]. Acta energiae solaris sinica, 2023, 44(4): 290-298.
[2] 高毓壑, 季杰, 赵志, 等. 太阳能光伏制冷系统与其他制冷系统的能耗模拟及经济性比较[J]. 太阳能学报, 2020, 41(5): 336-344.
GAO Y H, JI J, ZHAO Z, et al.Simulation of energy consumption and economic comparison between solar PV cooling system and other cooling systems[J]. Acta energiae solaris sinica, 2020, 41(5): 336-344.
[3] 王瑞, 李明, 王云峰, 等. 分布式光伏直驱制冰系统的实验研究[J]. 云南师范大学学报(自然科学版), 2018, 38(1): 7-11.
WANG R, LI M, WANG Y F, et al.Experimental study on the distributed photovoltaic direct-drive ice making system[J]. Journal of Yunnan Normal University (natural sciences edition), 2018, 38(1): 7-11.
[4] XU Y F, MA X, HASSANIEN R H E, et al. Performance analysis of static ice refrigeration air conditioning system driven by household distributed photovoltaic energy system[J]. Solar energy, 2017, 158: 147-160.
[5] 李沐, 李亚溪, 李传常. 相变储冷技术及其在空调系统中的应用[J]. 储能科学与技术, 2023, 12(1): 180-197.
LI M, LI Y X, LI C C.Phase-change cold storage technology and its application in air conditioning systems[J]. Energy storage science and technology, 2023, 12(1): 180-197.
[6] 方玉堂, 谢鸿洲, 梁向晖, 等. 聚苯乙烯-二氧化硅@十四烷复合纳米相变胶囊的表征及其乳液性能[J]. 化工学报, 2015, 66(2): 800-805.
FANG Y T, XIE H Z, LIANG X H, et al.Characterization of polystyrene-silica@n-tetradecane composite nano-encapsulated phase change material and its emulsion performance[J]. CIESC journal, 2015, 66(2): 800-805.
[7] 高立营, 郅慧, 张远军, 等. 相变材料微胶囊的制备与表征分析方法综述[J]. 南京工业大学学报(自然科学版), 2022, 44(6): 624-632.
GAO L Y, ZHI H, ZHANG Y J, et al.Review of the preparation and characterization of microencapsulated phase change materials[J]. Journal of Nanjing Tech University(natural science edition), 2022, 44(6): 624-632.
[8] 鲍家明, 邹得球, 朱思贤, 等. 高温相变材料胶囊化及应用研究进展[J]. 化工进展, 2020, 39(7): 2687-2697.
BAO J M, ZOU D Q, ZHU S X, et al.Research progress on high temperature phase change materials encapsulation and application[J]. Chemical industry and engineering progress, 2020, 39(7): 2687-2697.
[9] ZHAI X Y, WANG J H, ZHANG X W, et al.Polyurethane foam based composite phase change microcapsules with reinforced thermal conductivity for cold energy storage[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2022, 652: 129875.
[10] YANG X, LIU Y, LYU Z H, et al.Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage[J]. Journal of energy storage, 2021, 33: 102059.
[11] JAMEKHORSHID A, SADRAMELI S M, BAHRAMIAN A R.Process optimization and modeling of microencapsulated phase change material using response surface methodology[J]. Applied thermal engineering, 2014, 70(1): 183-189.
[12] HAO G Q, YU C, CHEN Y Y, et al.Controlled microfluidic encapsulation of phase change material for thermo-regulation[J]. International journal of heat and mass transfer, 2022, 190: 122738.
[13] 陈宇溪, 王艳娇, 朱自豪, 等. 微流控技术制备磁性聚合物微球及对孔雀石绿的吸附性能研究[J]. 分子科学学报, 2023, 39(1): 78-86.
CHEN Y X, WANG Y J, ZHU Z H, et al.Preparation of magnetic polymer microspheres by microfluidic technology and their adsorption properties for malachite green[J]. Journal of molecular science, 2023, 39(1): 78-86.
[14] 高景瑞, 谢晖, 黄莉. 柔性环氧丙烯酸酯的合成及UV固化性能[J]. 南京工业大学学报(自然科学版), 2022, 44(1): 45-50, 67.
GAO J R, XIE H, HUANG L.Synthesis and UV curing performance of flexible epoxy acrylates[J]. Journal of Nanjing Technology University (natural science edition), 2022, 44(1): 45-50, 67.
[15] GAO W, LIU F F, YU C, et al.Microfluidic method-based encapsulated phase change materials: fundamentals, progress, and prospects[J]. Renewable and sustainable energy reviews, 2023, 171: 112998.
[16] HAN X, KONG T T, ZHU P G, et al.Microfluidic encapsulation of phase-change materials for high thermal performance[J]. Langmuir, 2020, 36(28): 8165-8173.
[17] AKAMATSU K, OGAWA M, KATAYAMA R, et al.A facile microencapsulation of phase change materials within silicone-based shells by using glass capillary devices[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2019, 567: 297-303.
[18] 王澄濠. 基于微流控技术制备新型建筑相变材料研究[D]. 桂林: 桂林电子科技大学, 2022.
WANG C H.Study on preparation of new building phase change materials based on microfluidic technology[D]. Guilin: Guilin University of Electronic Technology, 2022.
[19] 陈润泽. 石蜡相变微胶囊可控制备及其固-液相变性能[D]. 广州: 广东工业大学, 2021.
CHEN R Z.Controllable preparation of paraffin phase change microcapsules and their solid-liquid phase change properties[D]. Guangzhou: Guangdong University of Technology, 2021.
[20] WANG X F, LI C H, ZHAO T.Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance[J]. Solar energy materials and solar cells, 2018, 183: 82-91.
[21] MOFFAT R J.Describing the uncertainties in experimental results[J]. Experimental thermal and fluid science, 1988, 1(1): 3-17.

PDF(3558 KB)

Accesses

Citation

Detail

段落导航
相关文章

/