为减小风能间歇性和波动性对孤岛风电制氢系统经济性、稳定性的影响,提出一种多时间尺度能量管理策略。日前阶段建立日前电解槽启停优化模型,利用改进金豺算法进行求解,以最大期望日收益优化电解槽的启停状态以及系统各单元的运行计划。日内阶段建立日内滚动优化模型并提出一种碱性电解槽功率分级能量管理策略,根据日前优化结果和超短期预测信息,以系统日收益最大重新优化系统运行计划。实时阶段设计一种考虑系统慢动态响应的孤岛风电制氢系统实时能量管理策略,在出现非计划风功率波动时根据系统实时运行状态实时调整系统运行模式。仿真结果表明,所提出的多时间尺度能量管理策略可在波动性风速下有效维持系统功率平衡,减小电解槽的功率波动,提高系统经济性。
Abstract
In order to reduce the impact of wind energy intermittency and volatility on the economy and stability of isdated island wind power hydrogen production system, a multi-time scale energy management strategy is proposed. In the day-ahead stage, the start-stop optimization model of the day-ahead electrolyzer is established, and the improved golden jackpot algorithm is used to solve the problem, so as to optimize the start-stop state of the electrolyzer and the operation plan of each unit of the system with the maximum expected daily income. In the intra-day stage, an intra-day rolling optimization model is established, and a power grading energy management strategy for alkaline electrolyzer is proposed. According to the day-ahead optimization results and ultra-short-term prediction information, the system operation plan is re-optimized with the maximum daily profit of the system. In the real-time stage, a real-time energy management strategy for isdated island wind power hydrogen production system considering the slow dynamic response of the system is designed. When unplanned wind power fluctuations occur, the system operation mode is adjusted in real time according to the real-time operation state of the system. The simulation results show that the proposed multi-time scale energy management strategy can effectively maintain the power balance of the system under fluctuating wind speed, reduce the power fluctuation of the electrolyzer and improve the economy of the system.
关键词
风电 /
制氢 /
多时间尺度 /
能量管理 /
孤岛系统 /
金豺算法
Key words
wind power /
hydrogen production /
multiple-time-scale /
energy management /
islanded system /
golden jackal algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孟照鑫, 何青, 胡华为, 等. 我国氢能产业发展现状与思考[J]. 现代化工, 2022, 42(1): 1-6,12.
MENG Z Q, HE Q, HU H W, et al.Development situation and consideration of hydrogen energy industry[J]. Modern chemical industry, 2022, 42(1): 1-6,12.
[2] 张盛, 郑津洋, 戴剑锋, 等. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465.
ZHANG S, ZHENG J Y, DAI J F, et al.Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta energiae solaris sinica, 2024, 45(1): 457-465.
[3] 李建林, 李光辉, 梁丹曦, 等. “双碳目标” 下可再生能源制氢技术综述及前景展望[J]. 分布式能源, 2021, 6(5): 1-9.
LI J L, LI G H, LIANG D X, et al.Review and prospect of hydrogen production technology from renewable energy under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(5): 1-9.
[4] 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083.
SUN H X, LI Z, CHEN A B, et al.Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
[5] 曹蕃, 郭婷婷, 殷爱鸣, 等. 风光氢混合发电系统设计与能量管理策略研究进展[J]. 分布式能源, 2021, 6(4): 1-14.
CAO F, GUO T T, YIN A M, et al.Research progress on optimal sizing and energy management strategy of wind-solar-hydrogen hybrid energy systems[J]. Distributed energy, 2021, 6(4): 1-14.
[6] 蒲雨辰, 李奇, 陈维荣, 等. 计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J]. 电网技术, 2019, 43(3): 918-927.
PU Y C, LI Q, CHEN W R, et al.Energy management for islanded DC microgrid with hybrid electric-hydrogen energy storage system based on minimum utilization cost and energy storage state balance[J]. Power system technology, 2019, 43(3): 918-927.
[7] MAGHAMI M R, HASSANI R, GOMES C, et al.Hybrid energy management with respect to a hydrogen energy system and demand response[J]. International journal of hydrogen energy, 2020, 45(3): 1499-1509.
[8] LIU X H, WANG Y B, TIAN J Q, et al.Multi-objective optimization of wind-hydrogen integrated energy system with aging factor[J]. International journal of hydrogen energy, 2023, 48(62): 23749-23764.
[9] VARELA C, MOSTAFA M, ZONDERVAN E.Modeling alkaline water electrolysis for power-to-x applications: a scheduling approach[J]. International journal of hydrogen energy, 2021, 46(14): 9303-9313.
[10] MATUTE G, YUSTA J M, BEYZA J, et al.Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions[J]. International journal of hydrogen energy, 2021, 46(2): 1449-1460.
[11] 曹榆. 孤岛型微电网系统能量优化调度[D]. 广州: 华南理工大学, 2021.
CAO Y.Optimal energy scheduling of isolated island microgrid system[D]. Guangzhou: South China University of Technology, 2021.
[12] 李杨. 新能源制氢系统多时间尺度优化调度策略研究[D]. 徐州: 中国矿业大学, 2023.
LI Y.Research on multi-time scale optimal scheduling strategy of new energy hydrogen production system[D]. Xuzhou: China University of Mining and Technology, 2023.
[13] LI P, WANG Z X, WANG J H, et al.A multi-time-space scale optimal operation strategy for a distributed integrated energy system[J]. Applied energy, 2021, 289: 116698.
[14] 牟亚雪. 风氢混合发电系统的协调控制及能量管理研究[D]. 成都: 电子科技大学, 2022.
MU Y X.Study on coordinated control and energy management of wind-hydrogen hybrid power generation system[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[15] 成燕, 庄飞鸯, 徐万万, 等. 基于多时间尺度的户用光储能量管理策略[J]. 控制工程, 2024, 31(1): 18-24.
CHENG Y, ZHUANG F Y, XU W W, et al.Energy management strategy for household photovoltaic-storage based on multi-time scale[J]. Control engineering of China, 2024, 31(1): 18-24.
[16] SONG Y J, MU H L, LI N, et al.Optimal scheduling of zero-carbon integrated energy system considering long- and short-term energy storages, demand response, and uncertainty[J]. Journal of cleaner production, 2024, 435: 140393.
[17] FANG X L, DONG W, WANG Y B, et al.Multi-stage and multi-timescale optimal energy management for hydrogen-based integrated energy systems[J]. Energy, 2024, 286: 129576.
[18] 江悦, 沈小军, 吕洪, 等. 碱性电解槽运行特性数字孪生模型构建及仿真[J]. 电工技术学报, 2022, 37(11): 2897-2908.
JIANG Y, SHEN X J, LYU H, et al.Construction and simulation of operation digital twin model for alkaline water electrolyzer[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2897-2908.
[19] CHOPRA N, MOHSIN ANSARI M.Golden jackal optimization: a novel nature-inspired optimizer for engineering applications[J]. Expert systems with applications, 2022, 198: 116924.
基金
河北省重点研发计划(21314303D); 河北省科技重大专项项目(23284502Z)