基于模块化浮码头的半潜式风力机安装动力响应分析

马青阳, 任年鑫, 吴佩宵, 李延巍, 闫俊

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 655-661.

PDF(1698 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1698 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 655-661. DOI: 10.19912/j.0254-0096.tynxb.2024-0541

基于模块化浮码头的半潜式风力机安装动力响应分析

  • 马青阳1, 任年鑫1, 吴佩宵2, 李延巍1, 闫俊3
作者信息 +

DYNAMIC RESPONSE ANALYSIS OF INSTALLATION OF SEMI-SUBMERSIBLE WIND TURBINE BASED ON MODULAR FLOATING DOCK

  • Ma Qingyang1, Ren Nianxin1, Wu Peixiao2, Li Yanwei1, Yan Jun3
Author information +
文章历史 +

摘要

提出一种基于模块化浮码头进行半潜式风力机坐底式安装的新方案。综合考虑模块化浮码头的多体水动力耦合效应和风力机吊装过程的机械耦合效应,构建基于模块化浮码头的半潜式风力机安装过程耦合时域分析模型,对比研究典型海况下常规浮式风力机安装过程与新型坐底式风力机安装过程的动力响应特征。数值结果表明,模块化浮码头具有存放风力机吊装部件的良好性能;相比于常规浮式安装方案,坐底式安装方案的风力机基础展现出更好的纵摇和辅助夹具受力的性能。因此,基于模块化浮码头的半潜式风力机坐底式安装方案可适应更恶劣的安装作业海况,有利于提升浮式海上风力机的安装作业安全及全年有效作业时间。

Abstract

The article introduces a sit-on-the-botton installation approach for semi-submersible with turbines using modular floating docks. Considering the multi-body hydrodynamic coupling effect of the modular floating dock and the mechanical coupling effect of the wind turbine lifting process, a coupled time-domain analysis model of the semi-submersible wind turbine installation process based on the modular floating dock is constructed. The model is then used to comparatively investigate the dynamic response of the conventional floating wind turbine installation scheme and the proposed sit-on-the-bottom wind turbine installation scheme under the typical seas. The numerical results show that the modular floating dock has a good performance for storing the lifting components of the wind turbine. The wind turbine foundation of the sit-on-the-bottom installation scheme shows a better performance in pitch motions and auxiliary clamps compared with the conventional floating installation scheme. Therefore, the modular floating dock-based semi-submersible wind turbine bottom mounting solution can be adapted to more severe installation conditions, which is conducive to improving the safety of floating offshore wind turbine installation operations and the effective operation time throughout the year.

关键词

浮式码头 / 半潜式风力机 / 安装 / 动力响应 / 模块化结构

Key words

floating dock / semi-submersible wind turbine / installation / dynamic responses / modular structure

引用本文

导出引用
马青阳, 任年鑫, 吴佩宵, 李延巍, 闫俊. 基于模块化浮码头的半潜式风力机安装动力响应分析[J]. 太阳能学报. 2025, 46(5): 655-661 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0541
Ma Qingyang, Ren Nianxin, Wu Peixiao, Li Yanwei, Yan Jun. DYNAMIC RESPONSE ANALYSIS OF INSTALLATION OF SEMI-SUBMERSIBLE WIND TURBINE BASED ON MODULAR FLOATING DOCK[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 655-661 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0541
中图分类号: TK83   

参考文献

[1] 王凡. 新型风机运输安装船的水动力特性及安装动力响应分析[D]. 武汉: 武汉理工大学, 2021.
WANG F.Hydrodynamic characteristics and installation dynamic response analysis of a new type of fan transport installation ship[D]. Wuhan: Wuhan University of Technology, 2021.
[2] HASSAN M, GUEDES SOARES C.Dynamic analysis of a novel installation method of floating spar wind turbines[J]. Journal of marine science and engineering, 2023, 11(7): 1373.
[3] 李帅, 任亚君, 郝军刚, 等. 基于水动力分析的15 MW级半潜式漂浮基础优化研究[J]. 水力发电, 2023, 49(8): 99-107.
LI S, REN Y J, HAO J G, et al.Optimization of 15 MW semi-submersible floating foundation based on hydrodynamic analysis[J]. Water power, 2023, 49(8): 99-107.
[4] 何佳龙, 李祥, 喻葭临, 等. 漂浮式海上风电施工关键技术应用研究进展[J]. 水力发电, 2023, 49(12): 108-111.
HE J L, LI X, YU J L, et al.Progress on the application of key technologies in floating offshore wind power construction[J]. Water power, 2023, 49(12): 108-111.
[5] HONG S H, ZHANG H X, NORD T S, et al.Effect of fender system on the dynamic response of onsite installation of floating offshore wind turbines[J]. Ocean engineering, 2022, 259: 111830.
[6] LIU M.Research on motion analysis and simulation technology of double ship floating installation of large structures[J]. Journal of physics: conference series, 2022, 2417(1): 012006.
[7] LIU T, HALSE K H, LEIRA B J, et al.Comparative study of the mating process for a spar-type floating wind turbine using two alternative installation vessels[J]. Applied ocean research, 2023, 132: 103452.
[8] 陈鹏飞, 官明开, 周莉莉, 等. 深远海半潜式风电安装平台及锚泊系统设计[J]. 中国海上油气, 2023, 35(5): 201-211.
CHEN P F, GUAN M K, ZHOU L L, et al.Design of semi-submersible platform and mooring system of offshore wind turbine installation in deep-sea[J]. China offshore oil and gas, 2023, 35(5): 201-211.
[9] 周胡, 李书兴, 张大勇, 等. 近海风机浮托安装的总体过程[J] .船舶工程, 2020, 42(增刊1): 538-541.
ZHOU H, LI S X, ZHANG D Y, et al.The overall process of floating installation for offshore wind turbine[J]. Ship engineering, 2020, 42(S1): 538-541.
[10] 王安安, 周道成, 任年鑫, 等. 新型张力腿平台双模块浮式海上风电机组结构系统的动力响应研究[J]. 太阳能, 2021(9): 39-46.
WANG A A,ZHOU D C, REN N X, et al.Research on dynamic response of new type of tension leg platform dual-modules floating offshore wind turbine structure system[J]. Solar energy, 2021(9): 39-46.
[11] 施伟, 薛瑞宁, 侯晓彬, 等. 10 MW级半潜漂浮式风机的动力响应[J]. 船舶工程, 2021, 43(10): 1-9, 43.
SHI W, XUE R N, HOU X B, et al.Dynamic response on 10 MW semisubmersible floating offshore wind turbine[J]. Ship engineering, 2021, 43(10): 1-9, 43.
[12] ZHANG Y, SHI W, LI D S, et al.A novel framework for modeling floating offshore wind turbines based on the vector form intrinsic finite element(VFIFE) method[J]. Ocean engineering, 2022, 262: 112221.
[13] ANSYS, Inc.ANSYS AQWA User’s Manual[R](Release13.0),2010.
[14] 李延巍, 莫文渊, 任年鑫, 等. 人工鱼礁-波浪能模块化浮体耦合动力响应分析[J]. 太阳能学报, 2022, 43(12): 489-494.
LI Y W, MO W Y, REN N X, et al.Coupled dynamic analysis of modular floating structure combined artificial reef and wave energy converter[J]. Acta energiae solaris sinica, 2022, 43(12): 489-494.
[15] IVAN N.Assessment of ship performance in a seaway[M]. Denmark: NORDFORSK, 1987.

基金

国家自然科学基金(52161041); 海南大学科研启动基金(KYQD(ZR)20009)

PDF(1698 KB)

Accesses

Citation

Detail

段落导航
相关文章

/