计及风电平抑的电-氢混合储能容量优化配置

李建林, 孙浩元, 张敏慧, 赵普, 马骥骋

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 120-129.

PDF(2225 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2225 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 120-129. DOI: 10.19912/j.0254-0096.tynxb.2024-1074
第二十七届中国科协年会学术论文

计及风电平抑的电-氢混合储能容量优化配置

  • 李建林, 孙浩元, 张敏慧, 赵普, 马骥骋
作者信息 +

OPTIMAL CAPACITY ALLOCATION OF ELECTRICITY-HYDROGEN HYBRID ENERGY STORAGE CONSIDERING WIND POWER SMOOTHING

  • Li Jianlin, Sun Haoyuan, Zhang Minhui, Zhao Pu, Ma Jicheng
Author information +
文章历史 +

摘要

针对风电并网波动性强、电能质量不佳以及电-氢混合储能容量配置不佳的问题,提出一种计及风电平抑下的电-氢混合储能容量优化配置研究。在风电典型场景下,首先采用基于鲸鱼算法优化的变分模态分解对风电信号进行处理,并结合风电并网波动量限值,得到直接并网分量与储能待平抑分量;其次,在充分考虑氢储能和电化学储能的相关特性与约束条件下,制定基于碱性电解槽实际运行特性与电化学储能实际运行状态的能量管理策略,基于此策略,在消纳储能待平抑分量的同时,以系统年综合成本最小为目标,建立电-氢混合储能容量配置模型,并采用CPLEX求解器求解。仿真结果表明:所提策略不仅能提高氢储能的利用率而且还能使电化学储能工作于安全工作区间;其次,该策略下的容量配置方案可在满足系统经济性的情况下,实现对风电更好地平抑。

Abstract

Aiming at the problems of high wind power grid-connection volatility, poor power quality and poor electricity-hydrogen hybrid energy storage capacity allocation, a study on the optimal allocation of electricity-hydrogen hybrid energy storage capacity under wind power smoothing is proposed. Under the typical scenario of wind power, firstly, a variational modal decomposition based on whale algorithm optimization is used to process the wind signal, and combined with the limit value of wind power grid fluctuation, the direct grid connection component and the energy storage to be suppressed component are obtained. Secondly, an energy management strategy based on the actual operating characteristics of alkaline electrolyzers and the actual operating state of electrochemical storage is formulated with full consideration of the characteristics and constraints of hydrogen and electrochemical storage. Based on this strategy, the hybrid electricity-hydrogen storage capacity allocation model is established with the goal of minimizing the annual comprehensive cost of the system while absorbing the energy storage to be levelled off component and solved by the CPLEX solver. The simulation results show that the proposed strategy not only improves the utilization rate of hydrogen storage but also keeps the electrochemical storage in the safe operating range; and that, the capacity allocation scheme under the strategy can achieve better suppression of wind power while meeting the system economics.

关键词

风电平抑 / 变分模态分解 / 电-氢混合储能 / 碱性电解槽 / 功率分配 / 容量配置

Key words

wind power smoothing / variational modal decomposition / electricity-hydrogen hybrid energy storage / alkaline electrolyzer / power ditribution / capacity configuration

引用本文

导出引用
李建林, 孙浩元, 张敏慧, 赵普, 马骥骋. 计及风电平抑的电-氢混合储能容量优化配置[J]. 太阳能学报. 2025, 46(6): 120-129 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1074
Li Jianlin, Sun Haoyuan, Zhang Minhui, Zhao Pu, Ma Jicheng. OPTIMAL CAPACITY ALLOCATION OF ELECTRICITY-HYDROGEN HYBRID ENERGY STORAGE CONSIDERING WIND POWER SMOOTHING[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 120-129 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1074
中图分类号: TK91   

参考文献

[1] 国家能源局发布《2024年能源工作指导意见》[N]. 中国信息化周报, 2024-04-01(005).
NEA releases Guidelines for Energy Work in2024[N]. China informatisation weekly, 2024-04-01(005).
[2] 洪国庆, 吴国旸, 金宇清, 等. 电力系统风力发电建模与仿真研究综述[J]. 电力系统自动化, 2024, 48(17): 22-36.
HONG G Q, WU G Y, JIN Y Q, et al.Review on research of modeling and simulation for wind power generation in power system[J]. Automation of electric power systems, 2024, 48(17): 22-36.
[3] 王季康, 李华, 张海龙, 等. 计及储能响应特性的风氢混合并网控制[J]. 太阳能学报, 2024, 45(5): 400-411.
WANG J K, LI H, ZHANG H L, et al.Hybrid wind-hydrogen grid-connected control considering energy storage response[J]. Acta energiae solaris sinica, 2024, 45(5): 400-411.
[4] 郑扬威, 江岳文, 张金辉. 高比例风电渗透下考虑长短期储能的源-储-输联合规划优化[J]. 电力自动化设备, 2023, 43(3): 63-71.
ZHENG Y W, JIANG Y W, ZHANG J H.Joint planning optimization of source-storage-transportation considering long- and short-term energy storage under high proportion of wind power penetration[J]. Electric power automation equipment, 2023, 43(3): 63-71.
[5] 陈洁, 詹仲强. 高阶统计量与小波包分解在风氢混合储能系统中的应用[J]. 太阳能学报, 2018, 39(11): 3286-3294.
CHEN J, ZHAN Z Q.Application of higher order statistics and wavelet packet decomposition in wind hydrogen hybrid energy storage system[J]. Acta energiae solaris sinica, 2018, 39(11): 3286-3294.
[6] 王森, 蔺红. 基于变系数ES的混合储能平抑风电波动控制策略[J]. 太阳能学报, 2019, 40(11): 3204-3212.
WANG S, LIN H.Control strategy of hybrid energy storage to stabilize wind power fluctuation based on variable coefficient exponential smoothing method[J]. Acta energiae solaris sinica, 2019, 40(11): 3204-3212.
[7] 陈燚, 何山, 谢少华, 等. 基于合作博弈的风-光-电氢微网容量配置[J]. 太阳能学报, 2024, 45(2): 395-405.
CHEN Y, HE S, XIE S H, et al.Capacity configuration of wind-photovoltaic-electric hydrogen microgrid based on cooperative game[J]. Acta energiae solaris sinica, 2024, 45(2): 395-405.
[8] 李建林, 邵晨曦, 张则栋, 等. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295.
LI J L, SHAO C X, ZHANG Z D, et al.Analysis of hydrogen industry policy and commercialization model[J]. Power generation technology, 2023, 44(3): 287-295.
[9] 李建林, 孙浩元, 赵文鼎, 等.基于变分模态分解-多模糊控制的风电混储系统功率分配策略[J/OL]. 上海交通大学学报, 2024: 1-18.(2024-02-27). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2023.572.
LI J L, SUN H Y, ZHAO W D, et al.Power allocation strategy for wind power hybrid storage system based on variational modal decomposition-multi-fuzzy control[J/OL]. Journal of Shanghai Jiao Tong university, 2024: 1-18.(2024-02-27). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2023.572.
[10] 何新宇, 党照群, 杨斯涵, 等. 平抑风电波动的混合储能容量配置策略[J]. 东北电力技术, 2024, 45(3): 7-12.
HE X Y, DANG Z Q, YANG S H, et al.Hybrid energy storage capacity configuration strategy for suppressing wind power fluctuations[J]. Northeast electric power technology, 2024, 45(3): 7-12.
[11] 马速良, 蒋小平, 马会萌, 等. 平抑风电波动的混合储能系统的容量配置[J]. 电力系统保护与控制, 2014, 42(8): 108-114.
MA S L, JIANG X P, MA H M, et al.Capacity configuration of the hybrid energy storage system for wind power smoothing[J]. Power system protection and control, 2014, 42(8): 108-114.
[12] ZHANG Y, XU Y J, GUO H, et al.A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations[J]. Renewable energy, 2018, 125: 121-132.
[13] 徐衍会, 徐宜佳. 平抑风电波动的混合储能容量配置及控制策略[J]. 中国电力, 2022, 55(6): 186-193.
XU Y H, XU Y J.Capacity configuration and control strategy of hybrid energy storage to smooth wind power fluctuations[J]. Electric power, 2022, 55(6): 186-193.
[14] DASH V, BAJPAI P.Power management control strategy for a stand-alone solar photovoltaic-fuel cell-battery hybrid system[J]. Sustainable energy technologies and assessments, 2015, 9: 68-80.
[15] 袁铁江, 郭建华, 杨紫娟, 等. 平抑风电波动的电-氢混合储能容量优化配置[J]. 中国电机工程学报, 2024, 44(4): 1397-1406.
YUAN T J, GUO J H, YANG Z J, et al.Optimal allocation of power electric-hydrogen hybrid energy storage of stabilizing wind power fluctuation[J]. Proceedings of the CSEE, 2024, 44(4): 1397-1406.
[16] 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495.
LI Q, ZHAO S D, PU Y C, et al.Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495.
[17] 李荦一, 韩莹, 李奇, 等. 计及效率特性的电-氢混合储能直流微网经济下垂控制策略[J]. 电力系统保护与控制, 2022, 50(7): 69-80.
LI L Y, HAN Y, LI Q, et al.Economic droop control strategy of a hybrid electric-hydrogen DC microgrid considering efficiency characteristics[J]. Power system protection and control, 2022, 50(7): 69-80.
[18] 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(增刊1): 133-144.
HOU H, LIU P, HUANG L, et al.Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 133-144.
[19] 侯慧, 戈翔迪, 吴细秀, 等. 运行与规划协同的电热氢联供系统最优容量配置研究[J]. 电力系统保护与控制, 2022, 50(24): 144-151.
HOU H, GE X D, WU X X, et al.Optimal capacity allocation of an electricity heat hydrogen cogeneration system based on coordinated operation and planning[J]. Power system protection and control, 2022, 50(24): 144-151.
[20] 王远路. 基于平抑风电场功率波动的混合储能配置研究[D]. 贵阳: 贵州大学, 2023.
WANG Y L.Research on hybrid energy storage configuration based on smoothing power fluctuation of wind farm[D]. Guiyang: Guizhou University, 2023.
[21] GB/T 19963.1—2021, 风电场接入电力系统技术规定第1部分:陆上风电[S].
GB/T 19963.1—2021, Technical specification for connecting wind farm to power system—part 1: on shore wind power[S].

基金

国家自然科学基金面上项目(52277211); 北京市大学生创新创业训练计划(10805136024XN139-35)

PDF(2225 KB)

Accesses

Citation

Detail

段落导航
相关文章

/