基于LNG冷能及燃料电池余热的KCS-DORC系统优化

陈旭阳, 杨帆, 李鹏飞, 海笑, 高月, 姜文全

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 152-160.

PDF(1767 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1767 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 152-160. DOI: 10.19912/j.0254-0096.tynxb.2024-1143

基于LNG冷能及燃料电池余热的KCS-DORC系统优化

  • 陈旭阳1, 杨帆2, 李鹏飞2, 海笑2, 高月2, 姜文全1
作者信息 +

OPTIMIZATION OF KCS-DORC SYSTEM BASED ON LNG COLD ENERGY AND FUEL CELL WASTE HEAT

  • Chen Xuyang1, Yang Fan2, Li Pengfei2, Hai Xiao2, Gao Yue2, Jiang Wenquan1
Author information +
文章历史 +

摘要

面向天然气燃料电池余热与液化天然气冷能的高效利用,设计整合氨水循环和双级有机朗肯的联合循环方案。通过数值模拟的计算方法,分析乙烷及其混合工质的热经济性能,同时分析汽轮机4入口压力p18、R1270质量流量qm,11和汽轮机1入口温度t26对系统的影响并对系统进行优化。结果表明:在高温级有机朗肯循环中,工况2的整体性能优于工况1,在乙烷与R600质量分数为0.2、0.8时净输出功最大。增加p18qm,11t26均有利于提升系统净输出功和热效率,增加p18有利于提升系统的㶲效率,但不利于系统的经济性。Matlab优化结果为3731.72 kW、41.95%和2.751×10-2美元/kWh。系统折旧回收期为4.94 a,冷库制冷系数为0.233。

Abstract

Aiming at the problems of waste heat recovery in solid fuel cells using natural gas as fuel and the utilization of cold energy in liquefied natural gas, a combined power cycle of ammonia-water power cycle and two-stage organic Rankine was proposed. The thermo-economic performance of hexane and its mixture was analyzed by the calculation method of numerical simulation. The effects of TUR4 inlet pressure p18, R1270 mass flow rate qm,11 and TUR1 inlet temperature t26 on system was also analyzed, followed by system optimization. The results show that the overall performance of Case 2 is superior to Case 1 in the high-temperature grade organic Rankine cycle, and the net output power is maximum at hexane/R600 mass fraction of (0.2/0.8). Increasing p18, qm,11 and t26 enhances net power output and thermal efficiency, while elevating p18 improves exergy efficiency but compromises economic performance. Matlab optimization results are 3731.72 kW, 41.95% and 2.751×10-2 $/kWh. The system depreciation payback period and cold storage cooling factor are 4.94 years and 0.233 respectively.

关键词

有机朗肯循环 / 余热回收 / 冷能利用 / 热经济性 / 多目标优化 / 氨水动力循环

Key words

organic Rankine cycle / waste heat recovery / cold energy utilization / thermal economy / multi objective optimization / ammonia-water power cycle

引用本文

导出引用
陈旭阳, 杨帆, 李鹏飞, 海笑, 高月, 姜文全. 基于LNG冷能及燃料电池余热的KCS-DORC系统优化[J]. 太阳能学报. 2025, 46(12): 152-160 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1143
Chen Xuyang, Yang Fan, Li Pengfei, Hai Xiao, Gao Yue, Jiang Wenquan. OPTIMIZATION OF KCS-DORC SYSTEM BASED ON LNG COLD ENERGY AND FUEL CELL WASTE HEAT[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 152-160 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1143
中图分类号: TK123   

参考文献

[1] 刘勇, 何枚玲. 气温变化与能源消耗的关联机制[J]. 中国西部, 2023(3): 80-91.
LIU Y, HE M L.Correlation mechanism between temperature change and energy consumption[J]. Western China, 2023(3): 80-91.
[2] 涂超, 黄跃武. 固体氧化物燃料电池和热辐射电池耦合系统的优化分析[J]. 太阳能学报, 2021, 42(10): 355-360.
TU C, HUANG Y W.Optimum analysis of a coupled system of solid oxide fuel cell and thermoradiative cell[J]. Acta energiae solaris sinica, 2021, 42(10): 355-360.
[3] YANG C, SUN L, CHEN H.Thermodynamics analysis of a novel compressed air energy storage system combined with solid oxide fuel cell-micro gas turbine and using low-grade waste heat as heat source[J]. Energies, 2023, 16(19): 7010.
[4] 万腾, 周卫红. 液化天然气冷能利用研究进展[J]. 煤气与热力, 2023, 43(4): 21-26.
WAN T, ZHOU W H.Research progress in cold energy utilization of liquefied natural gas[J]. Gas & heat, 2023, 43(4): 21-26.
[5] 郭英伦, 郗富强, 苏瑞智, 等. 基于LNG冷<inline-graphic xlink:href="-46-12-152/img_1.png"/>与燃料电池余热利用的TRCC串联系统[J]. 山东大学学报(工学版), 2019, 49(5): 52-57.
GUO Y L, XI F Q, SU R Z, et al.TRCC series system based on LNG cold energy and fuel cell waste heat utilization[J]. Journal of Shandong University(engineering science), 2019, 49(5): 52-57.
[6] 方震华, 李丁帅, 何依, 等. 两种冷热电联供系统的热经济对比分析[J]. 化学工程, 2021, 49(12): 12-16, 22.
FANG Z H, LI D S, HE Y, et al.Comparative thermoeconomic analysis of two combined cooling, heating and power systems[J]. Chemical engineering(China), 2021, 49(12): 12-16, 22.
[7] ZHAO H B, LU R H, ZHANG T H.Thermodynamic and economic performance study of SOFC combined cycle system using biomass and LNG coupled with CO2 recovery[J]. Energy conversion and management, 2023, 280: 116817.
[8] SHAZED A R, ASHRAF H M, KATEBAH M A, et al.Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells[J]. Energy, 2021, 218: 119510.
[9] 李惟毅, 梁娜, 孟金英, 等. 基液氨浓度对卡琳娜循环不同目标参数的影响[J]. 化工进展, 2015, 34(4): 957-964.
LI W Y, LIANG N, MENG J Y, et al.Effect of ammonia concentration of base solution on different target parameters[J]. Chemical industry and engineering progress, 2015, 34(4): 957-964.
[10] KAJUREK J, RUSOWICZ A, GRZEBIELEC A, et al.Selection of refrigerants for a modified organic Rankine cycle[J]. Energy, 2019, 168: 1-8.
[11] 曹健, 冯新, 吉晓燕, 等. 混合工质有机朗肯循环研究综述[J]. 热力发电, 2022, 51(1): 44-51.
CAO J, FENG X, JI X Y, et al.Review of studies on organic Rankine cycle with zeotropic mixtures[J]. Thermal power generation, 2022, 51(1): 44-51.
[12] 马新灵, 潘佳浩, 邱宇恒, 等. 不同工况下非共沸混合工质有机朗肯循环系统性能研究[J]. 热能动力工程, 2023, 38(2): 10-17.
MA X L, PAN J H, QIU Y H, et al.Performance study on zeotropic mixture organic Rankine cycle system under different working conditions[J]. Journal of engineering for thermal energy and power, 2023, 38(2): 10-17.
[13] DUONG P A, RYU B R, SONG M K, et al.Thermodynamics analysis of a novel designation of LNG solid oxide fuel cells combined system with CO2 capture using NG cold energy[J]. Journal of engineering research, 2024, 12(1): 226-238.
[14] LAN W C, LIU X, YE K, et al.Comprehensive thermodynamic and economic analysis of an LNG cold energy recovery system using organic Rankine cycle and freezing-centrifugal desalination for power and water cogeneration[J]. Journal of cleaner production, 2024, 461: 142677.
[15] 陈康, 郑少雄, 杜洋, 等. 固体散料余热驱动双压ORC多目标优化设计[J]. 工程热物理学报, 2022, 43(12): 3145-3153.
CHEN K, ZHENG S X, DU Y, et al.Multi-objective optimization of dual-pressure ORC driven by the waste heat of solid bulk material[J]. Journal of engineering thermophysics, 2022, 43(12): 3145-3153.
[16] ZHANG X X, HE M G, ZHANG Y.A review of research on the kalina cycle[J]. Renewable and sustainable energy reviews, 2012, 16(7): 5309-5318.
[17] ZHANG L, PAN Z, ZHANG Z E, et al.Thermodynamic and economic analysis between organic Rankine cycle and kalina cycle for waste heat recovery from steam-assisted gravity drainage process in oilfield[J]. Journal of energy resources technology, 2018, 140(12): 122005.
[18] MOSAFFA A H, MOKARRAM N H, FARSHI L G.Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy[J]. Geothermics, 2017, 65: 113-125.
[19] 张曼铮, 肖猛, 闫沛伟, 等. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512.
ZHANG M Z, XIAO M, YAN P W, et al.Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system[J]. CIESC journal, 2023, 74(8): 3502-3512.
[20] 朱轶林, 王永真, 张新敬, 等. 生物质有机朗肯循环热电联供系统的热经济分析[J]. 太阳能学报, 2021, 42(12): 312-319.
ZHU Y L, WANG Y Z, ZHANG X J, et al.Thermo-economic analysis of biomass-fired organic Rankine cycle combined heat and power system[J]. Acta energiae solaris sinica, 2021, 42(12): 312-319.
[21] 李鹏, 李国能, 苏航, 等. 不同运行方案下AA-CAES系统性能分析及优化[J]. 动力工程学报, 2022, 42(9): 843-851.
LI P, LI G N, SU H, et al.Performance analysis and optimization of AA-CAES system under different operation schemes[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 843-851.
[22] OGRISECK S.Integration of Kalina cycle in a combined heat and power plant, a case study[J]. Applied thermal engineering, 2009, 29(14/15): 2843-2848.
[23] FANG Z H, SHANG L Y, PAN Z, et al.Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy[J]. Energy conversion and management, 2021, 238: 114148.
[24] ZHANG C, LIU C, XU X X, et al.Energetic, exergetic, economic and environmental(4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles[J]. Energy, 2019, 168: 332-345.
[25] 杨宗辉, 唐美玲, 张小辉. 基于MOSSA算法的混合工质双压ORC系统多目标优化[J]. 节能, 2023, 42(3): 34-38.
YANG Z H, TANG M L, ZHANG X H.Multi-objective optimization of mixed working fluid dual-pressure ORC system based on MOSSA algorithm[J]. Energy conservation, 2023, 42(3): 34-38.
[26] SADEGHI M, NEMATI A, GHAVIMI A, et al.Thermodynamic analysis and multi-objective optimization of various ORC(organic Rankine cycle) configurations using zeotropic mixtures[J]. Energy, 2016, 109: 791-802.

基金

辽宁省教育厅基本科研项目(LJKMZ20220725)

PDF(1767 KB)

Accesses

Citation

Detail

段落导航
相关文章

/