基于OVMD-CNN-BiLSTM的短期光伏发电预测

梁富源, 万艳妮, 杨国华, 李方圆, 张梦晴, 杜文超

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 333-342.

PDF(4531 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4531 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 333-342. DOI: 10.19912/j.0254-0096.tynxb.2024-1144

基于OVMD-CNN-BiLSTM的短期光伏发电预测

  • 梁富源1, 万艳妮2, 杨国华2,3, 李方圆4, 张梦晴2, 杜文超2
作者信息 +

SHORT TERM PHOTOVOLTAIC POWER GENERATION PREDICTIONBASED ON OVMD-CNN-BiLSTM

  • Liang Fuyuan1, Wan Yanni2, Yang Guohua2,3, Li Fangyuan4, Zhang Mengqing2, Du Wenchao2
Author information +
文章历史 +

摘要

提出一种基于灰狼优化算法(GWO)改进变分模态分解(VMD)的卷积神经网络-双向长短期记忆网络(CNN-BiLSTM)预测模型以提高短期光伏发电功率的预测精度。首先,将预处理后的光伏发电数据通过最优变分模态分解(OVMD)算法分解为多个不同频率的模态分量;然后,将各模态信号及相关影响因素作为CNN-BiLSTM网络的输入进行训练、验证和测试;最后,将各模态分量的预测结果重构相加并分析预测误差。通过宁夏某光伏电站实测数据验证表明,该文提出的OVMD-CNN-BiLSTM模型相较于多种基准模型在预测精度和稳定性方面具有显著优势。

Abstract

As a kind of clean and environmentally friendly sustainable energy, photovoltaic power generation plays an important role in the process of building a new type of power system with new energy as the main body. However, the random intermittency of photovoltaic power generation brings great challenges to the stable operation of the grid. Therefore, this paper proposes convolutional neural network-bidirectional long short-term memory (CNN-BiLSTM) prediction model based on grey wolf optimization (GWO) algorithm improved variational mode decomposition (VMD) to improve the accuracy of short-term photovoltaic power generation prediction. Firstly, the pre-processed PV power generation data is decomposed into multiple frequency modal components by optimal variational mode decomposition (OVMD) algorithm. Then, different modal signals and related influencing factors are used as the input of CNN-BiLSTM network for training, verification and testing. Finally, the prediction error is analyzed and reconstructed. The simulation results based on the practical data of a photovoltaic power station in Ningxia verifies that the OVMD-CNN-BiLSTM model proposed in this paper has significant advantages in prediction accuracy and stability compared with various reference models.

关键词

光伏发电 / 功率预测 / 变分模态分解 / 灰狼优化 / 卷积神经网络 / 双向长短期记忆网络

Key words

photovoltaic power / power prediction / variational mode decomposition / grey wolf optimization / convolutional neural networks / bidirectional long short term memory network

引用本文

导出引用
梁富源, 万艳妮, 杨国华, 李方圆, 张梦晴, 杜文超. 基于OVMD-CNN-BiLSTM的短期光伏发电预测[J]. 太阳能学报. 2025, 46(12): 333-342 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1144
Liang Fuyuan, Wan Yanni, Yang Guohua, Li Fangyuan, Zhang Mengqing, Du Wenchao. SHORT TERM PHOTOVOLTAIC POWER GENERATION PREDICTIONBASED ON OVMD-CNN-BiLSTM[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 333-342 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1144
中图分类号: TM615   

参考文献

[1] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[2] 张振宇, 王文倬, 张钢, 等. 基于非时序模型的新能源消纳能力评估方法[J]. 电力系统自动化, 2019, 43(20): 24-30.
ZHANG Z Y, WANG W Z, ZHANG G, et al.Assessment method of accommodation capacity of renewable energy based on non-time-series model[J]. Automation of electric power systems, 2019, 43(20): 24-30.
[3] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[4] SANJARI M J, GOOI H B.Probabilistic forecast of PV power generation based on higher order Markov chain[J]. IEEE transactions on power systems, 2017, 32(4): 2942-2952.
[5] 刘丹, 刘方, 许彦平. 基于MIV-PSO-BPNN的光伏出力短期预测[J]. 太阳能学报, 2022, 43(6): 94-98.
LIU D, LIU F, XU Y P.Short-term photovoltaic power forecasting based on MIV-PSO-BPNN model[J]. Acta energiae solaris sinica, 2022, 43(6): 94-98.
[6] 张倩, 马愿, 李国丽, 等. 频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J]. 中国电机工程学报, 2019, 39(8): 2221-2230, 5.
ZHANG Q, MA Y, LI G L, et al.Applications of frequency domain decomposition and deep learning algorithms in short-term load and photovoltaic power forecasting[J]. Proceedings of the CSEE, 2019, 39(8): 2221-2230, 5.
[7] 刘杰, 陈雪梅, 陆超, 等. 基于数据统计特性考虑误差修正的两阶段光伏功率预测[J]. 电网技术, 2020, 44(8): 2891-2897.
LIU J, CHEN X M, LU C, et al.Two-stage photovoltaic power forecasting and error correction method based on statistical characteristics of data[J]. Power system technology, 2020, 44(8): 2891-2897.
[8] 朱想, 居蓉蓉, 程序, 等. 组合数值天气预报与地基云图的光伏超短期功率预测模型[J]. 电力系统自动化, 2015, 39(6): 4-10, 74.
ZHU X, JU R R, CHENG X, et al.A very short-term prediction model for photovoltaic power based on numerical weather prediction and ground-based cloud images[J]. Automation of electric power systems, 2015, 39(6): 4-10, 74.
[9] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[10] KERMIA M H, ABBES D, BOSCHE J.Photovoltaic power prediction using a recurrent neural network RNN[C]//2020 6th IEEE International Energy Conference (ENERGYCon). Gammarth, Tunisia, 2020: 545-549.
[11] HOSSAIN M S, MAHMOOD H.Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast[J]. IEEE access, 2020, 8: 172524-172533.
[12] HAM Y G, KIM J H, LUO J J.Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572.
[13] REN X Y, ZHANG F, ZHU H L, et al.Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting[J]. Applied energy, 2022, 323: 119682.
[14] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.
LU J X, ZHANG Q P, YANG Z H, et al.Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of electric power systems, 2019, 43(8): 131-137.
[15] PENG T, ZHANG C, ZHOU J Z, et al.An integrated framework of bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting[J]. Energy, 2021, 221: 119887.
[16] JOSEPH L P, DEO R C, PRASAD R, et al.Near real-time wind speed forecast model with bidirectional LSTM networks[J]. Renewable energy, 2023, 204: 39-58.
[17] GUO Y X, LI Y, QIAO X B, et al.BiLSTM multitask learning-based combined load forecasting considering the loads coupling relationship for multienergy system[J]. IEEE transactions on smart grid, 2022, 13(5): 3481-3492.
[18] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[19] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[20] ZHANG Y T, LI C L, JIANG Y Q, et al.Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model[J]. Journal of cleaner production, 2022, 354: 131724.
[21] 姜建国, 杨效岩, 毕洪波. 基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测[J]. 太阳能学报, 2024, 45(7): 462-473.
JIANG J G, YANG X Y, BI H B.Photovoltaic power forecasting method based on VMD-FE-CNN-BiLSTM[J]. Acta energiae solaris sinica, 2024, 45(7): 462-473.
[22] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[23] KUMARI P, TOSHNIWAL D.Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting[J]. Applied energy, 2021, 295: 117061.

基金

国家自然科学基金(62303252; 62203397); 宁夏自然科学基金(2024AAC03037)

PDF(4531 KB)

Accesses

Citation

Detail

段落导航
相关文章

/