基于黑翅鸢算法和VMD的短期风电功率预测

周金涛, 何山, 王维庆, 程静, 房忠, 陈军

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 762-773.

PDF(1673 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1673 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 762-773. DOI: 10.19912/j.0254-0096.tynxb.2024-1145

基于黑翅鸢算法和VMD的短期风电功率预测

  • 周金涛1, 何山1,2, 王维庆1,2, 程静1,2, 房忠3, 陈军3
作者信息 +

SHORT-TERM WIND POWER PREDICTION BASED ON BLACK-WINGED KITE ALGORITHM AND VMD

  • Zhou Jintao1, He Shan1,2, Wang Weiqing1,2, Cheng Jing1,2, Fang Zhong3, Chen Jun3
Author information +
文章历史 +

摘要

为提高短期风电功率预测精度,提出一种基于黑翅鸢算法(BKA)和变分模态分解(VMD)的短期风电功率预测模型。首先采用BKA确定VMD的参数,并且利用VMD将数据分解为若干个子序列以降低风电时间序列的复杂性和不稳定性。其次将各子序列与关键的气象数据结合构成输入分量,并利用时间卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制的组合预测模型对各输入分量分别进行预测。最后采用BKA确定预测模型超参数的最优组合方案,并将各预测结果进行加和重构得到最终风电功率预测结果。采用新疆某风电厂的实际风电功率数据对所提模型进行验证,并与其他5种组合预测模型进行性能对比。实验表明,所提模型预测效果优于其他预测模型,能够有效提升短期风电功率预测的准确性。

Abstract

To improve short-term wind power forecasting accuracy, a predictive model based on the Black Kite Algorithm (BKA) and Variational Mode Decomposition (VMD) was been proposed. Initially, the BKA algorithm was used to determine the VMD parameters, allowing VMD to decompose the data into multiple subsequences, which helps reduce the complexity and volatility of wind power time series. Each subsequence was then combined with essential meteorological data, creating input components for the predictive model, which is a hybrid framework involving a Temporal Convolutional Network (TCN), Bidirectional Gated Recurrent Units (BiGRU), and an attention mechanism. This composite model independently forecasts each input component, after which BKA optimizes the model’s hyperparameters to obtain the best combination scheme. The final wind power forecast was produced by summing and reconstructing the individual predictions. This model was validated using real wind power data from a wind farm in Xinjiang, and its performance was compared with five other combined forecasting models. Experimental results indicate that the prediction effect of the proposed model is superior to that of other predicition models, effectively enhancing the accuracy of short-term wind power forecasting.

关键词

风电功率 / 预测模型 / 变分模态分解 / 时间卷积网络 / 超参数搜索

Key words

wind power / prediction model / variational modal decomposition / temporal convolutional network / hyperparameter search

引用本文

导出引用
周金涛, 何山, 王维庆, 程静, 房忠, 陈军. 基于黑翅鸢算法和VMD的短期风电功率预测[J]. 太阳能学报. 2025, 46(12): 762-773 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1145
Zhou Jintao, He Shan, Wang Weiqing, Cheng Jing, Fang Zhong, Chen Jun. SHORT-TERM WIND POWER PREDICTION BASED ON BLACK-WINGED KITE ALGORITHM AND VMD[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 762-773 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1145
中图分类号: TM614   

参考文献

[1] 汪鸿, 朱正甲, 陈建华, 等. 基于人工智能技术与物理方法结合的新能源功率预测研究[J]. 高电压技术, 2023, 49(S1): 111-117.
WANG H, ZHU Z J, CHEN J H, et al.Study on new energy power prediction based on the combination of artificial intelligence technology and physical methods[J]. High voltage engineering, 2023, 49(S1): 111-117.
[2] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J]. High voltage engineering, 2021, 47(4): 1129-1143.
[3] 苗长新, 王霞, 李昊, 等. 基于数值天气预报风速误差修正的风电功率日前预测[J]. 电网技术, 2022, 46(9): 3455-3464.
MIAO C X, WANG X, LI H, et al.Day-ahead prediction of wind power based on NWP wind speed error correction[J]. Power system technology, 2022, 46(9): 3455-3464.
[4] 唐新姿, 顾能伟, 黄轩晴, 等. 风电功率短期预测技术研究进展[J]. 机械工程学报, 2022, 58(12): 213-236.
TANG X Z, GU N W, HUANG X Q, et al.Progress on short term wind power forecasting technology[J]. Journal of mechanical engineering, 2022, 58(12): 213-236.
[5] 王一妹, 刘辉, 宋鹏, 等. 基于高斯混合模型聚类的风电场短期功率预测方法[J]. 电力系统自动化, 2021, 45(7): 37-43.
WANG Y M, LIU H, SONG P, et al.Short-term power forecasting method of wind farm based on Gaussian mixture model clustering[J]. Automation of electric power systems, 2021, 45(7): 37-43.
[6] 刘擘龙, 张宏立, 王聪, 等. 基于序列到序列和注意力机制的超短期风速预测[J]. 太阳能学报, 2021, 42(9): 286-294.
LIU B L, ZHANG H L, WANG C, et al.Ultra-short-term wind speed prediction based on sequence-to-sequence and attention mechanism[J]. Acta energiae solaris sinica, 2021, 42(9): 286-294.
[7] TANG Y C, CHANG Y C, LI K H.Applications of K-nearest neighbor algorithm in intelligent diagnosis of wind turbine blades damage[J]. Renewable energy, 2023, 212: 855-864.
[8] 李俊逸, 尧远, 刘明浩. 基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断[J]. 太阳能学报, 2024, 45(7): 626-633.
LI J Y, YAO Y, LIU M H.SVM fault diagnosis of wind turbine’s gearbox based on optimal feature extraction algorithm of vibration signal[J]. Acta energiae solaris sinica, 2024, 45(7): 626-633.
[9] LIU J C, LI Y H.Study on environment-concerned short-term load forecasting model for wind power based on feature extraction and tree regression[J]. Journal of cleaner production, 2020, 264: 121505.
[10] DE FALCO D E, CALABRÒ F, PRAGLIOLA M. Insights on the different convergences in extreme learning machine[J]. Neurocomputing, 2024, 599: 128061.
[11] 吉兴全, 曾若梅, 张玉敏, 等. 基于注意力机制的CNN-LSTM短期电价预测[J]. 电力系统保护与控制, 2022, 50(17): 125-132.
JI X Q, ZENG R M, ZHANG Y M, et al.CNN-LSTM short-term electricity price prediction based on an attention mechanism[J]. Power system protection and control, 2022, 50(17): 125-132.
[12] DING M, ZHOU H, XIE H, et al.A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting[J]. Neurocomputing, 2019, 365: 54-61.
[13] 马志侠, 张林鍹, 巴音塔娜, 等. 基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测[J]. 太阳能学报, 2024, 45(6): 429-435.
MA Z X, ZHANG L X, BA Y, et al.Ultra-short-term wind power prediction based on adaptive quadratic mode decomposition and CNN-BiLSTM[J]. Acta energiae solaris sinica, 2024, 45(6): 429-435.
[14] 刘新宇, 蒲欣雨, 李继方, 等. 基于贝叶斯优化的VMD-GRU短期风电功率预测[J]. 电力系统保护与控制, 2023, 51(21): 158-165.
LIU X Y, PU X Y, LI J F, et al.Short-term wind power prediction of a VMD-GRU based on Bayesian optimization[J]. Power system protection and control, 2023, 51(21): 158-165.
[15] 符杨, 任子旭, 魏书荣, 等. 基于改进LSTM-TCN模型的海上风电超短期功率预测[J]. 中国电机工程学报, 2022, 42(12): 4292-4303.
FU Y, REN Z X, WEI S R, et al.Ultra-short-term power prediction of offshore wind power based on improved LSTM-TCN model[J]. Proceedings of the CSEE, 2022, 42(12): 4292-4303.
[16] 肖烈禧, 张玉, 周辉, 等. 基于IAOA-VMD-LSTM的超短期风电功率预测[J]. 太阳能学报, 2023, 44(11): 239-246.
XIAO L X, ZHANG Y, ZHOU H, et al.Ultra short trem wind power prediction based on IAOA-VMD-LSTM[J]. Acta energiae solaris sinica, 2023, 44(11): 239-246.
[17] 刘栋, 魏霞, 王维庆, 等. 基于SSA-ELM的短期风电功率预测[J]. 智慧电力, 2021, 49(6): 53-59, 123.
LIU D, WEI X, WANG W Q, et al.Short-term wind power prediction based on SSA-ELM[J]. Smart power, 2021, 49(6): 53-59, 123.
[18] LIU Y, GUAN L, HOU C, et al.Wind power short-term prediction based on LSTM and discrete wavelet transform[J]. Applied sciences, 2019, 9(6): 1108.
[19] 魏震波, 余雷. 基于FFT, DC-HC及LSTM的短期负荷预测方法[J]. 智慧电力, 2022, 50(3): 37-43.
WEI Z B, YU L.Short-term load forecasting method based on FFT, DC-HC and LSTM[J]. Smart power, 2022, 50(3): 37-43.
[20] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[21] 刘凡, 李捍东, 覃涛. 基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 151-158.
LIU F, LI H D, QIN T.Short-term wind power prediction based on CEEMDAN-AsyHyperBand-MultiTCN[J]. Acta energiae solaris sinica, 2024, 45(1): 151-158.
[22] WEN Y, PAN S, LI X X, et al.Highly fluctuating short-term load forecasting based on improved secondary decomposition and optimized VMD[J]. Sustainable energy, grids and networks, 2024, 37: 101270.
[23] 史彭珍, 魏霞, 张春梅, 等. 基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 226-233.
SHI P Z, WEI X, ZHANG C M, et al.Short-term wind power prediction based on VMD-BOA-LSSVM-AdaBoost[J]. Acta energiae solaris sinica, 2024, 45(1): 226-233.
[24] 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211.
WANG W G, WEI Y B, TENG X D.Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(3): 204-211.
[25] WANG J, WANG W C, HU X X, et al.Blackwinged kite algorithm: a nature-inspired metaheuristic for solving benchmark functions and engineering problems[J]. Artificial intelligence review, 2024, 57(4): 1-53.
[26] 赵洋, 王瀚墨, 康丽, 等. 基于时间卷积网络的短期电力负荷预测[J]. 电工技术学报, 2022, 37(5): 1242-1251.
ZHAO Y, WANG H M, KANG L, et al.Temporal convolution network-based short-term electrical load forecasting[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1242-1251.
[27] 陈庆明, 廖鸿飞, 孙颖楷, 等. 基于GWO-GRU的光伏发电功率预测[J]. 太阳能学报, 2024, 45(7): 438-444.
CHEN Q M, LIAO H F, SUN Y K, et al.Photovoltaic power prediction model based on GWO-GRU[J]. Acta energiae solaris sinica, 2024, 45(7): 438-444.
[28] 回立川, 曹威, 闫康, 等. 基于IGJO-VMD-SVM的电机轴承故障诊断研究[J/OL]. 控制工程, 2024: 1-10. (2024-03-26). https://link.cnki.net/doi/10.14107/j.cnki.kzgc.20230712.
HUI L C, CAO W, YAN K, et al. Research on fault diagnosis of motor bearing based on IGJO-VMD-SVM[J/OL]. Control engineering of China, 2024: 1-10. (2024-03-26). https://link.cnki.net/doi/10.14107/j.cnki.kzgc.20230712.
[29] AI C Y, HE S, HU H, et al.Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm[J]. Chaos, solitons & fractals, 2023, 177: 114222.
[30] 尤勇, 孟云龙, 吴景涛, 等. 基于WOA-SVR的汽车运动状态估计[J/OL]. 中国机械工程, 2024: 1-10. (2024-03-02). https://kns.cnki.net/KCMS/detail/detail.aspx filenam e=ZGJX20240228004&dbname=CJFD&dbcode=CJFQ.
YOU Y, MENG Y L, WU J T, et al. Vehicle motion state estimation based on WOA-SVR[J/OL]. China mechanical engineering, 2024: 1-10. (2024-03-02). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=ZGJX20240228004&dbname=CJFD&dbcode=CJFQ.
[31] 王延峰, 曹育晗, 孙军伟. 基于多策略改进金豺算法优化LSTM的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(14): 95-102.
WANG Y F, CAO Y H, SUN J W.Short-term power load forecasting based on multi-strategy improved golden jackal algorithm-optimized LSTM[J]. Power system protection and control, 2024, 52(14): 95-102.

基金

新疆自治区重点实验室开放课题(2023D04029); 新疆自治区重点研发项目(2022B01003-3); 国家重点研发计划(2021YFB1506902); 第三次新疆综合科学考察(2021xjkk1102)

PDF(1673 KB)

Accesses

Citation

Detail

段落导航
相关文章

/