风剪切工况下长柔叶片气弹耦合效应对大型风力机载荷特性影响研究

李逸佳, 周乐, 马璐, 雷肖, 沈昕, 杜朝辉

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 751-761.

PDF(14580 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(14580 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 751-761. DOI: 10.19912/j.0254-0096.tynxb.2024-1288

风剪切工况下长柔叶片气弹耦合效应对大型风力机载荷特性影响研究

  • 李逸佳1, 周乐1, 马璐2, 雷肖2, 沈昕1,3, 杜朝辉1,3
作者信息 +

INFLUENCE STUDY ON AERODYNAMIC COUPLING EFFECT OF LONG FLEXIBLE BLADES ON LOAD CHARACTERISTICS OF LARGE WIND TURBINES UNDER WIND SHEAR CONDITIONS

  • Li Yijia1, Zhou Le1, Ma Lu2, Lei Xiao2, Shen Xin1,3, Du Zhaohui1,3
Author information +
文章历史 +

摘要

以IEA-15 MW风力机为对象,基于非定常叶素动量理论模型和几何精确梁理论模型研究风剪切工况下叶片气弹耦合效应对大型风力机载荷特性的影响。结果表明:在风剪切工况下,风力机载荷呈类简谐波动,且叶片的柔性形变会导致风力机载荷降低。由于动态入流效应、翼型非定常气动特性以及叶片形变共同作用导致的风力机载荷响应延迟,会加剧风轮的偏航力矩。随着风剪切系数的增大,风力机的功率、推力以及风轮俯仰力矩和偏航力矩的均值和波动幅值增大,叶片载荷响应的迟滞也更加明显。

Abstract

Based on dynamic blade element momentum and geometrically exact beam theory, the effect of aerodynamic coupling effect on the load characteristics of IEA-15 MW wind turbines under wind shear conditions are studied in this paper. The results show that the wind turbine loads are similar to simple harmonics under the wind shear condition, and the flexible deformation of the blades will lead to the reduction of the wind turbine loads. Due to the dynamic inflow effect, unsteady aerodynamic characteristics of airfoil and blade deformation, the delay of wind turbine load response will increase the yaw torque of wind turbine. With the increase of wind shear coefficient, the mean value and fluctuation amplitude of wind turbine power, thrust, wind turbine pitch moment and yaw moment increase, and the hysteresis of blade load response becomes more obvious.

关键词

风力机 / 气动特性 / 气动弹性 / 柔性形变 / 风剪切 / 几何精确梁模型

Key words

wind turbines / aerodynamics / aeroelasticity / flexible deformantion / wind shear / geometrically exact beam theory

引用本文

导出引用
李逸佳, 周乐, 马璐, 雷肖, 沈昕, 杜朝辉. 风剪切工况下长柔叶片气弹耦合效应对大型风力机载荷特性影响研究[J]. 太阳能学报. 2025, 46(12): 751-761 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1288
Li Yijia, Zhou Le, Ma Lu, Lei Xiao, Shen Xin, Du Zhaohui. INFLUENCE STUDY ON AERODYNAMIC COUPLING EFFECT OF LONG FLEXIBLE BLADES ON LOAD CHARACTERISTICS OF LARGE WIND TURBINES UNDER WIND SHEAR CONDITIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 751-761 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1288
中图分类号: TK89   

参考文献

[1] 高晓清, 陈伯龙, 杨丽薇, 等. 大气湍流稳定度对风力机尾流影响的模拟研究[J]. 太阳能学报, 2020, 41(4): 145-152.
GAO X Q, CHEN B L, YANG L W, et al.Simulation study of impact of atmospheric turbulence stability on turbine wake[J]. Acta energiae solaris sinica, 2020, 41(4): 145-152.
[2] 关鹏, 丁珏, 翁培奋. 不同湍流模型对水平轴风力机三维粘性气流特性的影响[J]. 太阳能学报, 2010, 31(1): 86-90.
GUAN P, DING J, WENG P F.Separated flows around hawt blade with different turbulent models[J]. Acta energiae solaris sinica, 2010, 31(1): 86-90.
[3] 陈晓明, 康顺. 偏航和风切变下风力机气动特性的研究[J]. 太阳能学报, 2015, 36(5): 1105-1111.
CHEN X M, KANG S.Research on wind turbine aerodynamic characteristics under yaw and shear[J]. Acta energiae solaris sinica, 2015, 36(5): 1105-1111.
[4] 杨从新, 张志梅, 王强, 等. 风剪切下塔影效应对水平轴风力机叶片及风轮气动载荷的影响[J]. 太阳能学报, 2022, 43(8): 253-259.
YANG C X, ZHANG Z M, WANG Q, et al.Influence of tower shadow effect on aerodynamic load of blade and rotor of horizontal axis wind turbines under wind shear[J]. Acta energiae solaris sinica, 2022, 43(8): 253-259.
[5] 孔屹刚, 王杰, 顾浩, 等. 基于风剪切和塔影效应的风力机风速动态建模[J]. 太阳能学报, 2011, 32(8): 1237-1244.
KONG Y G, WANG J, GU H, et al.Dynamics modeling of wind speed based on wind shear and tower shadow for wind turbine[J]. Acta energiae solaris sinica, 2011, 32(8): 1237-1244.
[6] 戴丽萍, 姚世刚, 王晓东, 等. 偏航工况风力机叶片流固耦合特性研究[J]. 太阳能学报, 2017, 38(4): 945-950.
DAI L P, YAO S G, WANG X D, et al.Fluid-structure interaction performance of wind turbine blade under yawed condition[J]. Acta energiae solaris sinica, 2017, 38(4): 945-950.
[7] 张玉良, 杨从新, 李仁年, 等. 风剪切对风力机设计的无关性分析[J]. 西华大学学报(自然科学版), 2007, 26(2): 61-63, 96-97.
ZHANG Y L, YANG C X, LI R N, et al. Irrelative analysis of wind shear in the design of a wind turbine[J]. Journal of Xihua University(natural science edition), 2007, 26(2): 61-63, 96-97.
[8] 杨从新, 张旭耀, 李银然, 等. 风剪切来流下风力机叶片表面压力的分布规律[J]. 太阳能学报, 2018, 39(4): 1142-1148.
YANG C X, ZHANG X Y, LI Y R, et al.Distribution law of surface pressure of wind turbine blade under wind shear flow[J]. Acta energiae solaris sinica, 2018, 39(4): 1142-1148.
[9] LARSEN T J, HANSEN A M, BUHL T.Aeroelastic effects of large blade deflections for wind turbines[C]// Proceedings of the Special topic conference: the science of making torque from wind, Delft University of Technology, 2004.
[10] 李德源, 汪显能, 莫文威, 等. 非定常条件下风力机柔性叶片气弹耦合分析[J]. 太阳能学报, 2017, 38(4): 966-975.
LI D Y, WANG X N, MO W W, et al.Aeroelastic coupling analysis of flexible blades of wind turbine under unsteady conditions[J]. Acta energiae solaris sinica, 2017, 38(4): 966-975.
[11] 冷峻, 郜志腾, 郑小波, 等. 基于致动线方法的5 MW海上风力机气动弹性分析[J]. 空气动力学学报, 2022, 40(4): 203-209.
LENG J, GAO Z T, ZHENG X B, et al.Aeroelastic analysis of a 5 MW offshore wind turbine based on actuator line method[J]. Acta aerodynamica sinica, 2022, 40(4): 203-209.
[12] 黄鑫祥, 郭小锋, 齐剑峰. 风力机叶片动态气弹变形及其对整机性能的影响[J]. 可再生能源, 2020, 38(7): 916-921.
HUANG X X, GUO X F, QI J F.Dynamic aeroelastic deformation of wind turbine blade and its influence on the performance of wind turbine[J]. Renewable energy resources, 2020, 38(7): 916-921.
[13] YU D O, KWON O J.Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method[J]. Renewable energy, 2014, 70: 184-196.
[14] 钱晓航, 郜志腾, 王同光, 等. 百米级大柔性风电叶片非线性气弹响应分析[J]. 空气动力学学报, 2022, 40(4): 220-230.
QIAN X H, GAO Z T, WANG T G, et al.Nonlinear aeroelastic response analysis of 100-meter-scale flexible wind turbine blades[J]. Acta aerodynamica sinica, 2022, 40(4): 220-230.
[15] MORIARTY P J, HANSEN A C.AeroDyn Theory Manual[R]. NREL/TP-500-36881, 2005.
[16] WERAPUN W, TIRAWANICHAKUL Y, WAEWSAK J.Wind shear coefficients and their effect on energy production[J]. Energy procedia, 2017, 138: 1061-1066.
[17] DIAZ A P, MIKKELSEN T, GRYNING S-E, et al.Offshore vertical wind shear: final report on NORSEWInD’s work task 3.1[R]. Technical University of Denmark, 2012.
[18] GAERTNER E, RINKER J, SETHURAMAN L, et al.IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine[R]. IEA-TCP task 37, 2020.
[19] HANSEN M.Aerodynamics of wind turbines[M]. 3th ed. London and New York: Routledge, 2015:76-169.
[20] 陈进格, 沈昕, 王广, 等. 基于升力面和大变形梁的风力机叶片气弹模型[J]. 工程热物理学报, 2018, 39(7): 1469-1475.
CHEN J G, SHEN X, WANG G, et al.Aeroelastic modeling for wind turbine blade based on lifting surface model and nonlinear beam theory[J]. Journal of engineering thermophysics, 2018, 39(7): 1469-1475.

基金

航空发动机及燃气轮机基础科学中心项目(P2022-B-V-004-001); 15 MW 级海上风电机组关键技术研究与应用——海上风电叶片结构建模与运动响应计算项目(202303070)

PDF(14580 KB)

Accesses

Citation

Detail

段落导航
相关文章

/