基于Petri网的多电源场景双渠道制氢系统优化控制

韩晓娟, 张哲闻, 刘慕然

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 142-151.

PDF(2281 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2281 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 142-151. DOI: 10.19912/j.0254-0096.tynxb.2024-1305

基于Petri网的多电源场景双渠道制氢系统优化控制

  • 韩晓娟1, 张哲闻1, 刘慕然2
作者信息 +

OPTIMIZATION CONTROL METHOD OF DUAL-CHANNEL HYDROGEN PRODUCTION SYSTEM WITH MULTI-POWER SCENARIOS BASED ON PETRI NET

  • Han Xiaojuan1, Zhang Zhewen1, Liu Muran2
Author information +
文章历史 +

摘要

为提高可再生能源耦合制氢系统的安全性和能量转换效率,提出基于Petri网的多电源场景双渠道制氢系统优化控制方法。根据不同制氢设备对波动输入的适应能力差异性,构建由碱性电解槽、质子交换膜电解槽和燃料电池组成的多电源场景混合制氢系统架构;采用鲁棒经验模态分解算法对风光耦合输出功率进行分解,根据电解槽承载的功率下限值和电解槽冷启动时间,制定双渠道电解槽启停控制规则,建立基于Petri网的双渠道电解槽优化控制模型。通过某风电和光伏机组实际运行数据仿真实例验证所提方法的有效性。与单一渠道制氢系统相比,采用双渠道制氢可使能量转换效率提升至61.52%,可降低碱性电解槽的启停次数,提高制氢系统的安全性和经济性。

Abstract

To enhance the safety and energy conversion efficiency of renewable energy-coupled hydrogen production systems, this study proposes an optimization control method for dual-channel hydrogen production systems in multi-source scenarios based on Petri nets. Considering the varying adaptability of different hydrogen production equipment to fluctuating inputs, a hybrid hydrogen production system architecture comprising alkaline electrolyzers, proton exchange membrane electrolyzers, and fuel cells is constructed. A robust empirical mode decomposition algorithm is employed to decompose the coupled wind-solar output power. Based on the lower limit value value of the power carried by the electrolyzers and cold start time of the electrolyzers, dual-channel electrolyzer start-stop control rules are formulated, establishing a Petri net-based optimization control model for dual-channel electrolyzers. The effectiveness of this method is validated through simulation examples using actual operational data from a wind and photovoltaic power plant. Compared to single-channel hydrogen production systems, the dual-channel approach enhances energy conversion efficiency to 61.52%, reduces alkaline electrolyzer start-stop frequency, and improves both safety and economic performance of the hydrogen production system.

关键词

制氢 / Petri网 / 优化控制系统 / 燃料电池 / 碱性电解槽 / 质子交换膜电解槽 / 鲁棒经验模态分解

Key words

hydrogen production / Petri nets / fuel cell / optimal control systems / Alkaline electrolysis cell / proton exchange membrane electrolysis cell / robust empirical mode decomposition

引用本文

导出引用
韩晓娟, 张哲闻, 刘慕然. 基于Petri网的多电源场景双渠道制氢系统优化控制[J]. 太阳能学报. 2025, 46(12): 142-151 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1305
Han Xiaojuan, Zhang Zhewen, Liu Muran. OPTIMIZATION CONTROL METHOD OF DUAL-CHANNEL HYDROGEN PRODUCTION SYSTEM WITH MULTI-POWER SCENARIOS BASED ON PETRI NET[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 142-151 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1305
中图分类号: TK91   

参考文献

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 姚芳, 杨晓娜, 葛磊蛟, 等. 风-光-氢能源系统容量优化配置研究[J]. 综合智慧能源, 2022, 44(5): 56-63.
YAO F, YANG X N, GE L J, et al.Optimization of capacity allocation scheme for wind-solar-hydrogen energy system[J]. Integrated intelligent energy, 2022, 44(5): 56-63.
[3] 李笑竹, 陈来军, 殷骏, 等. 面向低碳供能的多园区共享氢储能系统容量规划[J]. 高电压技术, 2022, 48(7): 2534-2544.
LI X Z, CHEN L J, YIN J, et al.Capacity planning of multiple parks shared hydrogen energy storage system for low-carbon energy supply[J]. High voltage engineering, 2022, 48(7): 2534-2544.
[4] 徐帅, 刘莘轶, 徐加陵, 等. 基于FLC-MPC的风氢耦合发电系统超前控制策略研究[J]. 太阳能学报, 2025, 46(7): 218-227.
XU S, LIU S Y, XU J L, et al.Research on advanced control strategy for wind hydrogen hybrid power generation system based on FLC-MPC[J]. Acta energiae solaris sinica, 2025, 46(7): 218-227.
[5] TANG Y Z, XUN Q, ZHENG Z Q, et al.An optimization framework for component sizing and energy management in electric-hydrogen hybrid energy storage systems[J]. IEEE transactions on sustainable energy, 2025, 16(3): 2182-2196.
[6] 陈磊磊, 年珩, 赵建勇, 等. 含多电解槽的新能源制氢能量管理优化[J]. 电力工程技术, 2024, 43(2): 2-10.
CHEN L L, NIAN H, ZHAO J Y, et al.Energy management optimization of new energy hydrogen production system including multi-electrolyzers[J]. Electric power engineering technology, 2024, 43(02): 2-10.
[7] 黄大为, 齐德卿, 蔡国伟. 基于制氢系统的平抑风电输出功率方法研究[J]. 太阳能学报, 2016, 37(12): 31553162.
HUANG D W, QI D Q, CAI G W.Research of output power smoothing method of wind farm with hydrogen producing system[J]. Acta energiae solaris sinica, 2016, 37(12): 3155-3162.
[8] HAN X J, GUO S Q, ZHANG Z W.An ICEEMDAN-based collaborative optimization control for wind-hydrogen-electrochemical energy storage under multiple application scenarios[J]. Journal of renewable and sustainable energy, 2023, 15(5): 054101.
[9] FANG R M, LIANG Y.Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International journal of hydrogen energy, 2019, 44(46): 25104-25111.
[10] 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496.
ZHENG B, BAI Z, YUAN Y, et al.Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496.
[11] 黄启帆, 陈洁, 曹喜民, 等. 基于碱性电解槽和质子交换膜电解槽协同制氢的风光互补制氢系统优化[J]. 电力自动化设备, 2023, 43(12): 168-174.
HUANG Q F, CHEN J, CAO X M, et al.Optimization of wind-photovoltaic complementation hydrogen production system based on synergistic hydrogen production by alkaline electrolyzer and proton exchange membrane electrolyzer[J]. Electric power automation equipment, 2023, 43(12): 168-174.
[12] 洪振鹏. 氢储能技术在电力系统中的应用研究[D]. 北京: 华北电力大学, 2022.
HONG Z P.Application research of hydrogen energy storage technology in power system[D]. Beijing: North China Electric Power University, 2022.
[13] ABDIN Z, WEBB C J, GRAY E M.Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. International journal of hydrogen energy, 2015, 40(39): 13243-13257.
[14] ZHANG K, ZHOU B, OR S W, et al.Optimal coordinated control of multi-renewable-to-hydrogen production system for hydrogen fueling stations[J]. IEEE transactions on industry applications, 2022, 58(02): 2728-2739.
[15] ALIRAHMI S M, RAZMI A R, ARABKOOHSAR A.Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems[J]. Renewable and sustainable energy reviews, 2021, 142: 110850.
[16] MA Z W, WITTEMAN L, WRUBEL J A, et al.A comprehensive modeling method for proton exchange membrane electrolyzer development[J]. International journal of hydrogen energy, 2021, 46(34): 17627-17643.
[17] 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(11): 133-136.
NING N.Research on hydrogen generation system by water electrolysis under wide power fluctuation[J]. Ship science and technology, 2017, 39(11): 133-136.
[18] 韩晓娟. 多源信息融合技术在火电厂热力系统故障诊断中的应用研究[D]. 北京: 华北电力大学, 2008.
HAN X J.Application research of thermal system fault diagnosis based on multi-source information fusion technology in power plant[D]. Beijing: North China Electric Power University, 2008.
[19] 王荣. 基于时延Petri网的最短时间路径规划[D]. 西安: 西安电子科技大学, 2020.
WANG R.Shortest time path planning based on timed Petri nets[D]. Xi’an: Xidian University, 2020.
[20] 于绍琪, 田玉平. 基于Petri网与多智能体深度强化学习的AGV路径规划[J].控制与决策,2025, 40(5): 1438-1446.
YU S Q, TIAN Y P .AGV path planning based on Petri net and multi-agent deep reinforcement learning[J]. Control and decision, 2025, 40(5): 1438-1446.
[21] 丁显, 冯涛, 何广利, 等. 风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J]. 储能科学与技术, 2022, 11(10): 3275-3284.
DING X, FENG T, HE G L, et al.Research progress of the influence of wind power and photovoltaic of power fluctuation on water electrolyzer for hydrogen production[J]. Energy storage science and technology, 2022, 11(10): 3275-3284.
[22] 张轩, 王凯, 樊昕晔, 等. 电解水制氢成本分析[J]. 现代化工, 2021, 41(12): 7-11.
ZHANG X, WANG K, FAN X Y, et al.Cost analysis on hydrogen production via water electrolysis[J]. Modern chemical industry, 2021, 41(12): 7-11.
[23] 高阳, 郭凯凯, 李琪, 等. 浙江沿海地区可再生能源制氢的成本研究[J]. 能源工程, 2022, 42(03): 45-49.
GAO Y, GUO K K, LI Q, et al.Research on the cost of hydrogen production from renewable energy in coastal areas of Zhejiang[J]. Energy engineering, 2022, 42(03): 45-49.

基金

国家自然科学基金(52277216)

PDF(2281 KB)

Accesses

Citation

Detail

段落导航
相关文章

/