针对传统风电功率预测方法在时序与空间全局特征的联系紧密性及并行处理方面考虑较少,预测可靠性有限的问题,提出基于交叉注意力融合时空特征的超短期风电功率预测方法(TCN-SENet-Transformer)。首先,利用压缩激励网络(SENet)调整通道特征权重,并通过时域卷积网络(TCN)捕捉数据的空间特征;同时,采用Transformer识别多特征数据的长期时序特征;然后,引入交叉注意力机制(CA)融合时序和空间特征;最后,以中国某风电场的实际数据进行超短期风电功率预测,并与其他预测模型进行对比,算例分析结果表明,所提组合预测模型可有效提高预测精度。
Abstract
Aiming at the problems that traditional wind power forecasting methods have few considerations in terms of the close relationship between time series and spatial global features and parallel processing, and the prediction reliability is limited, an ultra-short term wind power forecasting method based on cross-attention fusion of spatial-temporal features of TCN-SENet-Transformer is proposed. Firstly, squeeze and excitation networks(SENet) are used to adjust the channel feature weights, and temporal convolutional networks(TCN) are used to capture the spatial features of the data. Meanwhile, Transformer is used to identify the long-term timing characteristics of multi-feature data. Then, cross-attention(CA) is introduced to integrate temporal and spatial features. Finally, the actual data of a wind farm in China is used to forecast ultra-short term wind power, and the comparison is made with other prediction models. The results of example analysis show that the proposed combined prediction model effectively improves the prediction accuracy.
关键词
风电功率预测 /
时域卷积网络 /
压缩激励网络 /
Transformer模型 /
交叉注意力机制 /
超短期
Key words
wind power forecast /
time-domain convolutional network(TCN) /
squeeze-and-excitation networks(SENet) /
Transformer model /
cross-attention(mechanism) /
ultra-short-term
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李丹, 方泽仁, 缪书唯, 等. 考虑训练样本分布不均衡的超短期风电功率概率预测[J]. 电网技术, 2024, 48(3): 1133-1147.
LI D, FANG Z R, MIAO S W, et al.Probability prediction of ultra-short-term wind power considering unbalanced distribution of training samples[J]. Power system technology, 2024, 48(3): 1133-1147.
[2] 李士哲, 王霄慧, 刘帅. 考虑多变量相关性改进的风电场Transformer中长期预测模型[J]. 智慧电力, 2024, 52(4): 62-68, 107.
LI S Z, WANG X H, LIU S.Improved transformer medium and long term prediction model of wind farm considering multivariate correlation[J]. Smart power, 2024, 52(4): 62-68, 107.
[3] 邬永, 王冰, 陈玉全, 等. 融合精细化气象因素与物理约束的深度学习模型在短期风电功率预测中的应用[J]. 电网技术, 2024, 48(4): 1455-1468.
WU Y, WANG B, CHEN Y Q, et al.Application of deep learning model integrating fine meteorological factors and physical constraints in short-term wind power prediction[J]. Power system technology, 2024, 48(4): 1455-1468.
[4] 杨茂, 董昊. 基于数值天气预报风速和蒙特卡洛法的短期风电功率区间预测[J]. 电力系统自动化, 2021, 45(5): 79-85.
YANG M, DONG H.Short-term wind power interval prediction based on wind speed of numerical weather prediction and Monte Carlo method[J]. Automation of electric power systems, 2021, 45(5): 79-85.
[5] LE GOFF LATIMIER R, LE BOUEDEC E, MONBET V. Markov switching autoregressive modeling of wind power forecast errors[J]. Electric power systems research, 2020, 189: 106641.
[6] LIU M D, DING L, BAI Y L.Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy conversion and management, 2021, 233: 113917.
[7] WANG K, ZHANG Y, LIN F, et al.Nonparametric probabilistic forecasting for wind power generation using quadratic spline quantile function and autoregressive recurrent neural network[J]. IEEE transactions on sustainable energy, 2022, 13(4): 1930-1943.
[8] 马志侠, 张林鍹, 巴音塔娜, 等. 基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测[J]. 太阳能学报, 2024, 45(6): 429-435.
MA Z X, ZHANG L X, BA Y, et al.Ultra-short-term wind power prediction based on adaptive quadratic mode decomposition and cnn-BiLSTM[J]. Acta energiae solaris sinica, 2024, 45(6): 429-435.
[9] 肖烈禧, 张玉, 周辉, 等. 基于IAOA-VMD-LSTM的超短期风电功率预测[J]. 太阳能学报, 2023, 44(11): 239-246.
XIAO L X, ZHANG Y, ZHOU H, et al.Ultra-short term wind power prediction based on IAO-VMD-LSTM[J]. Acta energiae solaris sinica, 2023, 44(11): 239-246.
[10] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[11] BAI S J, ZICO KOLTER J, KOLTUN VLADLEN. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv, 2018, 1803.01271: 3-4.
[12] CHEN Y B, XU J J.Solar and wind power data from the Chinese state grid renewable energy generation forecasting competition[J]. Scientific data, 2022, 9: 577.
基金
湖南省教育厅科学研究重点项目(23A0441); 湖南省自然科学基金(2023JJ50176)