计及电-热-混氢天然气耦合的综合能源微网双层博弈低碳经济调度

王长刚, 孙晓宁, 曹宇, 梁栋, 李扬, 莫静山

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 509-521.

PDF(1552 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1552 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 509-521. DOI: 10.19912/j.0254-0096.tynxb.2024-1321

计及电-热-混氢天然气耦合的综合能源微网双层博弈低碳经济调度

  • 王长刚1,2, 孙晓宁2, 曹宇1,2, 梁栋3, 李扬1,2, 莫静山1,2
作者信息 +

LOW-CARBON ECONOMIC DISPATCH FOR INTEGRATED ENERGY MICROGRIDS WITH TWO-LAYER GAMING TAKING INTO ACCOUNT COUPLED ELECTRICITY-HEAT-HCNG

  • Wang Changgang1,2, Sun Xiaoning2, Cao Yu1,2, Liang Dong3, Li Yang1,2, Mo Jingshan1,2
Author information +
文章历史 +

摘要

针对现有研究难以解决混氢天然气渗透的综合能源微网中多主体利益分配问题,该文提出一种基于双层博弈的低碳经济调度方法。首先,对电解制氢设备、混氢燃机进行精细化建模,并在负荷侧引入混氢负荷,完善氢气从制取到利用的全过程。其次,引入碳交易和需求响应机制,在限制源侧碳排放的同时充分发掘负荷侧的减碳潜力。分析微网运营商(MGO)与负荷聚合商(LA)之间的博弈关系,建立上层MGO与下层LA的Stackelberg博弈模型。然后,采用黑翅鸢优化算法结合CPLEX对该文模型进行求解。最后,通过算例对比,证明了所提方法的有效性。所提方法在降低微网碳排放,促进可再生能源消纳的同时,可有效均衡MGO与LA的利益分配。

Abstract

Aiming at the problem of multi-subject benefit distribution in the integrated energy microgrid permeated by hydrogen-enriched compressed natural gas (HCNG), this paper proposes a low-carbon economic dispatch method based on a bi-level game. Firstly, the electrolysis hydrogen production equipment and hydrogen mixing combustion engine are modeled in a refined way, and the HCNG load is introduced on the load side to improve the whole process of hydrogen from production to utilization. Secondly, carbon trading and demand response mechanisms are introduced to fully explore the carbon reduction potential on the load side while limiting carbon emissions on the source side. The game relationship between microgrid operator (MGO) and load aggregator (LA) is analyzed, and a Stackelberg game model of the upper MGO and the lower LA is established. Then, the model of the paper is solved by using the black-winged kite optimization algorithm combined with CPLEX. Finally, the effectiveness of the proposed method is proved through the comparison of arithmetic examples. The proposed method can effectively equalize the benefit distribution between MGO and LA while reducing the carbon emission of microgrid and improving the rate of renewable energy consumption.

关键词

综合能源微网 / 碳交易 / 需求响应 / 混氢天然气 / 主从博弈

Key words

integrated energy microgrid / carbon trading / demand respond / HCNG / Stackelberg game

引用本文

导出引用
王长刚, 孙晓宁, 曹宇, 梁栋, 李扬, 莫静山. 计及电-热-混氢天然气耦合的综合能源微网双层博弈低碳经济调度[J]. 太阳能学报. 2025, 46(12): 509-521 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1321
Wang Changgang, Sun Xiaoning, Cao Yu, Liang Dong, Li Yang, Mo Jingshan. LOW-CARBON ECONOMIC DISPATCH FOR INTEGRATED ENERGY MICROGRIDS WITH TWO-LAYER GAMING TAKING INTO ACCOUNT COUPLED ELECTRICITY-HEAT-HCNG[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 509-521 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1321
中图分类号: TM73   

参考文献

[1] 闫群民, 贾宇飞, 马永翔, 宋潇. 基于Stackelberg主从博弈的微电网双层能量管理策略[J]. 太阳能学报,2024, 45(12): 650-658.
YAN Q M, JIA Y F, MA Y X, et al.Two-tier energy management strategy for microgrid based on Stackelberg master-slave game[J]. Acta energiae solaris sinica, 2024, 45(12): 650-658.
[2] 帅轩越, 马志程, 王秀丽, 等. 基于主从博弈理论的共享储能与综合能源微网优化运行研究[J]. 电网技术, 2023, 47(2): 679-690.
SHUAI X Y, MA Z C, WANG X L, et al.Optimal operation of shared energy storage and integrated energy microgrid based on leader-follower game theory[J]. Power system technology, 2023, 47(2): 679-690.
[3] 张虹, 张瑞芳, 周建丞, 等. 基于主从博弈和混合碳政策的园区综合能源系统低碳经济调度[J]. 太阳能学报, 2023, 44(9): 9-17.
ZHANG H, ZHANG R F, ZHOU J C, et al.Low-carbon economic dispatch of integrated energy system in campus based on Stackelberg game and hybrid carbon policy[J]. Acta energiae solaris sinica, 2023, 44(9): 9-17.
[4] 师瑞峰, 宁津, 高毓钦, 等. 含氢储能的公路交通风、光自洽微网系统优化调度策略研究[J]. 太阳能学报, 2023, 44(11): 513-521.
SHI R F, NING J, GAO Y Q, et al.Research on optimal dispatch strategy of wind and solar self-consistent microgrid in road transportation system with hydrogen energy storage[J]. Acta energiae solaris sinica, 2023, 44(11): 513-521.
[5] 杨周义, 邢海军, 江伟建, 等. 基于低碳需求响应的含煤制氢与碳捕集电厂的综合能源系统优化调度[J]. 电力自动化设备, 2024, 44(4): 25-32.
YANG Z Y, XING H J, JIANG W J, et al.Optimal scheduling of integrated energy system with coal-to-hydrogen and carbon capture power plant based on low-carbon demand response[J]. Electric power automation equipment, 2024, 44(4): 25-32.
[6] 王世豪, 吕家君, 李更丰, 等. 考虑氢混燃机动态混氢特性的电-气互联系统优化调度[J]. 电网技术, 2024, 48(5): 1896-1906.
WANG S H, LYU J J, LI G F, et al.Integrated electrical and natural gas system optimal scheduling considering dynamic hydrogen mixing characteristics of hydrogen mixed gas turbines[J]. Power system technology, 2024, 48(5): 1896-1906.
[7] 谢敏, 卢燕旋, 叶佳南, 等. 电-氢-混氢天然气耦合的城市综合能源系统低碳优化调度[J]. 电力自动化设备, 2023, 43(12): 109-117.
XIE M, LU Y X, YE J N, et al.Low-carbon optimal scheduling of electricity-hydrogen-hcng coupled urban integrated energy system[J]. Electric power automation equipment, 2023, 43(12): 109-117.
[8] 魏震波, 李杰, 杨超, 等. 基于动态掺氢策略的综合能源系统低碳经济调度[J]. 电网技术, 2024, 48(8): 3155-3164.
WEI Z B, LI J, YANG C, et al.Low-carbon economic scheduling for integrated energy system based on dynamic hydrogen doping strategy[J]. Power system technology, 2024, 48(8): 3155-3164.
[9] 黄启帆, 陈洁, 曹喜民, 等. 基于碱性电解槽和质子交换膜电解槽协同制氢的风光互补制氢系统优化[J]. 电力自动化设备, 2023, 43(12): 168-174.
HUANG Q F, CHEN J, CAO X M, et al.Optimization of wind-photovoltaic complementation hydrogen production system based on synergistic hydrogen production by alkaline electrolyzer and proton exchange membrane electrolyzer[J]. Electric power automation equipment, 2023, 43(12): 168-174.
[10] 陈彬, 谢和平, 刘涛, 等. 碳中和背景下先进制氢原理与技术研究进展[J]. 工程科学与技术, 2022, 54(1): 106-116.
CHEN B, XIE H P, LIU T, et al.Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality[J]. Advanced engineering sciences, 2022, 54(1): 106-116.
[11] GU X F, YING Z, ZHENG X Y, et al.Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production[J]. Renewable energy, 2023, 209: 53-62.
[12] 江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027.
JIANG Y W, YANG G M, CHEN Y X, et al.Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027.
[13] 秦琨, 王威, 李妍萍, 等. 掺氢比对低排放燃烧室性能影响研究[J]. 热能动力工程, 2024, 39(3): 47-56.
QIN K, WANG W, LI Y P, et al.Study on the influence of hydrogen blending ratio on low emission combustor performance[J]. Journal of engineering for thermal energy and power, 2024, 39(3): 47-56.
[14] 刘鑫蕊, 罗雨晴, 侯敏, 等. 阶梯式碳交易的城市多能系统能量互补优化调度策略[J]. 高电压技术, 2023, 49(6): 2275-2286.
LIU X R, LUO Y Q, HOU M, et al.Energy complementation optimal scheduling strategy of urban multi-energy system with stepped carbon trading[J]. High voltage engineering, 2023, 49(6): 2275-2286.
[15] 杨挺, 刘豪, 王静, 等. 基于深度强化学习的园区综合能源系统低碳经济调度[J]. 电网技术, 2024, 48(9): 3604-3613.
YANG T, LIU H, WANG J, et al.Deep reinforcement learning-based low-carbon economic dispatch of park integrated energy system[J]. Power system technology, 2024, 48(9): 3604-3613.
[16] 邱玥, 周苏洋, 顾伟, 等. “碳达峰、碳中和” 目标下混氢天然气技术应用前景分析[J]. 中国电机工程学报, 2022, 42(4): 1301-1321.
QIU Y, ZHOU S Y, GU W, et al.Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(4): 1301-1321.
[17] 吴嫦. 天然气掺混氢气使用的可行性研究[D]. 重庆: 重庆大学, 2018.
WU C.Feasibility study on the use of natural gas mixed with hydrogen[D]. Chongqing: Chongqing University, 2018.
[18] 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4): 1307-1321.
LI P, WU D F, LI Y W, et al.Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41(4): 1307-1321.
[19] 华昊辰, 吴浩星, 陈星莺, 等. 考虑用能经济性与用户满意度灵活协同的综合能源系统双层优化[J]. 电网技术, 2024, 48(10): 4174-4188.
HUA H C, WU H X, CHEN X Y, et al.Double layer optimization of integrated energy systems considering flexible collaboration between energy economy and user satisfaction[J]. Power system technology, 2024, 48(10): 4174-4188.
[20] WANG J, WANG W C, HU X X, et al.Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J]. Artificial intelligence review, 2024, 57(4): 98.

基金

国家自然科学基金(52307084)

PDF(1552 KB)

Accesses

Citation

Detail

段落导航
相关文章

/