盐穴压缩空气储能系统的再热级数研究

李习臣, 周灵敏, 寿恩广, 张恒, 华柳源, 蔡国政

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 60-66.

PDF(1024 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1024 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 60-66. DOI: 10.19912/j.0254-0096.tynxb.2024-1326

盐穴压缩空气储能系统的再热级数研究

  • 李习臣, 周灵敏, 寿恩广, 张恒, 华柳源, 蔡国政
作者信息 +

REHEAT STAGE STUDY OF SALT CAVERN COMPRESSED AIR ENERGY STORAGE SYSTEM

  • Li Xichen, Zhou Lingmin, Shou Enguang, Zhang Heng, Hua Liuyuan, Cai Guozheng
Author information +
文章历史 +

摘要

针对某盐穴压缩空气储能(CAES)项目,利用Python编写储能和释能全周期过程的系统计算程序,研究最高储气压强、膨胀节流压强、压缩机排温及再热级数对盐穴压缩空气储能系统特性的影响。结果发现:对于同一再热级数的压储系统,存在一个最优的最高储气压强和膨胀节流压强,此时压缩总耗功最小,系统转换效率最高;对于同一再热级数的压储系统,系统转换效率随着定压压缩机排温增大而增大,但变化趋势变缓;定压压缩机排温为400 ℃的一级再热压储系统具有最小压缩机耗功、最低气耗率和最高转换效率,其最高转换效率为71.43%,相对于三级再热型式提高了6.48%。

Abstract

A system calculation program for the full cycle process of energy storage and release was written by Python for a salt cavern compressed air energy storage (CAES) project. The effects of the highest storage gas pressure, expansion throttle pressure, compressor discharge temperature, and reheat stages on the characteristics of the salt cavern CAES were studied. The results show that there is an optimal highest storage gas pressure and expansion throttle pressure for CAES with the same reheat stage. At this time, the total compression power consumption is the smallest and the conversion efficiency is highest. The system conversion efficiency increases with the increase of the compressor discharge temperature for CAES with the same reheat stage, but the change trend slows down. The one-stage reheat CAES with compressor discharge temperature of 400 ℃ has the smallest compressor work consumption, the lowest gas consumption rate, and the highest conversion efficiency. The highest conversion efficiency is 71.43%, which is 6.48% higher than that of the three-stage reheat type.

关键词

压缩空气储能 / 地下储气库 / 转换效率 / 再热级数 / 储气压强 / 节流压强

Key words

compressed air energy storage / underground gas storage / conversion efficiency / reheat stages / air storage pressure / throttle pressure

引用本文

导出引用
李习臣, 周灵敏, 寿恩广, 张恒, 华柳源, 蔡国政. 盐穴压缩空气储能系统的再热级数研究[J]. 太阳能学报. 2025, 46(12): 60-66 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1326
Li Xichen, Zhou Lingmin, Shou Enguang, Zhang Heng, Hua Liuyuan, Cai Guozheng. REHEAT STAGE STUDY OF SALT CAVERN COMPRESSED AIR ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 60-66 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1326
中图分类号: TK02   

参考文献

[1] CONG R G.An optimization model for renewable energy generation and its application in China: a perspective of maximum utilization[J]. Renewable and sustainable energy reviews, 2013, 17: 94-103.
[2] 杨大慧, 文贤道, 钟晶亮, 等. AA-CAES系统释能过程安全减出力控制仿真分析[J]. 太阳能学报, 2023, 44(4): 283-289.
YANG D H, WEN X D, ZHONG J L, et al.Simulation analysis of runback conditions on energy release process of AA-CAES system[J]. Acta energiae solaris sinica, 2023, 44(4): 283-289.
[3] 张金宏, 杨建蒙, 李斌, 等. “光火储” 一体化发电系统的季节适应性分析[J]. 太阳能学报, 2024, 45(2): 300-308.
ZHANG J H, YANG J M, LI B, et al.Seasonal adaptability analysis of integrated power generation system of “photovoltaic thermal storage”[J]. Acta energiae solaris sinica, 2024, 45(2): 300-308.
[4] 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464.
HUANG J Y, LI X R, CAO Y J, et al.Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464.
[5] HADJIPASCHALIS I, POULLIKKAS A, EFTHIMIOU V.Overview of current and future energy storage technologies for electric power applications[J]. Renewable and sustainable energy reviews, 2009, 13(6/7): 1513-1522.
[6] 梅生伟, 公茂琼, 秦国良, 等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术, 2017, 41(10): 3392-3399.
MEI S W, GONG M Q, QIN G L, et al.Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power system technology, 2017, 41(10): 3392-3399.
[7] 梅生伟, 张通, 张学林, 等. 非补燃压缩空气储能研究及工程实践: 以金坛国家示范项目为例[J]. 实验技术与管理, 2022, 39(5): 1-8, 14.
MEI S W, ZHANG T, ZHANG X L, et al.Research and engineering practice of non-supplementary combustion compressed air energy storage: taking Jintan national demonstration project as an example[J]. Experimental technology and management, 2022, 39(5): 1-8, 14.
[8] 黄焰, 王新超, 李峻. 300 MW压缩空气储能系统建模仿真[J]. 能源与节能, 2023(11): 59-63, 69.
HUANG Y, WANG X C, LI J.Modeling and simulation of 300 MW compressed air energy storage system[J]. Energy and energy conservation, 2023(11): 59-63, 69.
[9] 凌晨, 吴斌, 朱学成, 等. 350 MW级先进压缩空气储能系统建模与特性分析[J]. 能源研究与利用, 2023(5): 28-32.
LING C, WU B, ZHU X C, et al.Modeling and characteristic analysis of 350 MW advanced compressed air energy storage system[J]. Energy research & utilization, 2023(5): 28-32.
[10] 韩中合, 孙烨, 李鹏, 等. 不同输出方式下2种AA-CAES系统性能的对比研究[J]. 太阳能学报, 2022, 43(5): 60-66.
HAN Z H, SUN Y, LI P, et al.Comparative study on performance of two AA-CAES systems under different output modes[J]. Acta energiae solaris sinica, 2022, 43(5): 60-66.
[11] 郭欢, 许剑, 陈海生, 等. 一种定压运行AA-CAES的系统效率分析[J]. 热能动力工程, 2013, 28(5): 540-546, 558.
GUO H, XU J, CHEN H S, et al.Analysis of the efficiency of a AA-CAES system operating at a constant pressure[J]. Journal of engineering for thermal energy and power, 2013, 28(5): 540-546, 558.
[12] 韩中合, 周权, 王营营, 等. 先进绝热压缩空气储能(AA-CAES)系统一种结构优化方案[J]. 太阳能学报, 2016, 37(3): 629-635.
HAN Z H, ZHOU Q, WANG Y Y, et al.Analysis of two sorts of configurations of AA-CAES system[J]. Acta energiae solaris sinica, 2016, 37(3): 629-635.
[13] GUO Z G, DENG G Y, FAN Y C, et al.Performance optimization of adiabatic compressed air energy storage with ejector technology[J]. Applied thermal engineering, 2016, 94: 193-197.

PDF(1024 KB)

Accesses

Citation

Detail

段落导航
相关文章

/