农村分布式能源系统运行特性及适用性分析

李涵钰, 张时聪, 吴迪, 刘志坚, 吴宽飞, 邢金来

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 483-498.

PDF(2348 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2348 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 483-498. DOI: 10.19912/j.0254-0096.tynxb.2024-1332

农村分布式能源系统运行特性及适用性分析

  • 李涵钰1, 张时聪2, 吴迪1, 刘志坚1, 吴宽飞3, 邢金来4
作者信息 +

ANALYSIS OF OPERATION PERFORMANCE AND APPLICABILITY OF DISTRIBUTED ENERGY SYSTEMS IN RURAL SCENARIOS

  • Li Hanyu1, Zhang Shicong2, Wu Di1, Liu Zhijian1, Wu Kuanfei3, Xing Jinlai4
Author information +
文章历史 +

摘要

为分析农村地区适宜的综合能源系统,考虑系统能量来源、储能设置方式、多站协同模式以及并网距离对农村综合能源系统的影响,提出一种农村多区域综合能源系统多时间尺度优化方法。结果显示,农村地区分布式能源系统更适合采用单站独立运行策略。通过多时间尺度调度可提高系统调度精度。不并网情景下,可再生能源系统总成本比化石能源系统高59.36%。并网情景下,当并网距离为20 km时,可再生能源系统经济性优于化石能源补充供应的系统,可再生能源消纳率比孤立运行提高62.5%;当并网距离大于40 km后,化石能源补充供应的系统孤立运行经济性更优,比可再生能源并网系统的成本降低10.15%以上。农村分布式能源系统选择上应考虑农村与电网的距离。

Abstract

To analyze the suitable integrated energy system in rural areas, a multi time scale optimization method for rural multi regional integrated energy systems is proposed, considering the impact of system energy sources, energy storage settings, multi station collaboration mode, and grid connection distance on the rural integrated energy system. The results show that distributed energy systems in rural areas are more suitable for adopting a single station independent operation strategy. Multi time scale scheduling can improve system scheduling accuracy. In the scenario of not being connected to the grid, the total cost of renewable energy systems is 59.36% higher than that of fossil energy systems. In the scenario of grid connection, when the grid connection distance is 20 km, the economic efficiency of renewable energy systems is better than that of systems supplemented by fossil fuels, and the consumption rate of renewable energy is 62.5% higher than that of isolated operation. When the grid connection distance is greater than 40 km, the economy of the isolated operation system of the fossil energy supplementary supply is better, with a cost reduction of more than 10.15% compared to the renewable energy grid connection system. The selection of rural distributed energy systems should consider the distance between rural areas and the power grid.

关键词

分布式能源 / 农村地区 / 多区域 / 多时间尺度

Key words

distributed energy / rural areas / multiple zones / multi-time scales

引用本文

导出引用
李涵钰, 张时聪, 吴迪, 刘志坚, 吴宽飞, 邢金来. 农村分布式能源系统运行特性及适用性分析[J]. 太阳能学报. 2025, 46(12): 483-498 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1332
Li Hanyu, Zhang Shicong, Wu Di, Liu Zhijian, Wu Kuanfei, Xing Jinlai. ANALYSIS OF OPERATION PERFORMANCE AND APPLICABILITY OF DISTRIBUTED ENERGY SYSTEMS IN RURAL SCENARIOS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 483-498 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1332
中图分类号: TM73   

参考文献

[1] SUN M X, CHEN G W, XU X B, et al.Reducing carbon footprint inequality of household consumption in rural areas: analysis from five representative provinces in China[J]. Environmental science & technology, 2021, 55(17): 11511-11520.
[2] 韩中合, 祁超, 丁敬, 等. 基于太阳能和生物质能的农村分布式供能系统研究[J]. 太阳能学报, 2019, 40(11): 3164-3171.
HAN Z H, QI C, DING J, et al.Research on distributed energy supply system based on solar energy and biomass energy in rural area[J]. Acta energiae solaris sinica, 2019, 40(11): 3164-3171.
[3] 刘艳峰, 杨燕子, 罗西. 关中农村不同类型家庭夏季柔性用能负荷多目标优化调度研究[J]. 太阳能学报, 2023, 44(8): 110-118.
LIU Y F, YANG Y Z, LUO X.Multi-objective optimization scheduling model of flexible energy consumption load in summer for different types of rural households in Guanzhong plain[J]. Acta energiae solaris sinica, 2023, 44(8): 110-118.
[4] 鲁玲, 苑涛, 王敏, 等. 考虑(㶲)效率的区域综合能源系统配置与调度双层优化[J]. 可再生能源, 2024, 42(10): 1381-1389.
LU L, YUAN T, WANG M, et al.Two-layer optimization of regional integrated energy system configuration and dispatching considering exergy efficiency[J]. Renewable energy resources, 2024, 42(10): 1381-1389.
[5] 王辉, 吴作辉, 李欣, 等. 含租赁共享储能的多微网与配电网的双层能量交易策略[J]. 电测与仪表, 2025, 62(6): 24-34.
WANG H, WU Z H, LI X, et al.Double-layer energy transaction strategy of multi-microgrids and distribution network with leased shared energy storage[J]. Electrical measurement and instrumentation, 2025, 62(6): 24-34.
[6] 陈佳琪. 多区域综合能源系统协同优化研究[D]. 北京: 北方工业大学, 2024.
CHEN J Q.Study on collaborative optimization of multi-regional integrated energy system[D]. Beijing: North China University of Technology, 2024.
[7] 钟永洁, 王紫东, 左建勋, 等.计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源,2024, 46(4): 52-59.
ZHONG Y J, WANG Z D, ZUO J X.Economic dispatch of multi energy complementary systems considering multi period scales and regional stratification[J]. Integrated intelligent energy, 2024, 46(4): 52-59.
[8] 郑诗程, 许浩, 郎佳红, 等. 计及光伏不确定性的多区域综合能源系统多场景分布鲁棒优化调度[J]. 太阳能学报, 2024, 45(3): 460-469.
ZHENG S C, XU H, LANG J H, et al.Multi-scenario distributed robust optimal scheduling of multi-area integrated energy systems considering photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2024, 45(3): 460-469.
[9] 程欣, 刘丽花, 张翔宇. 计及热负荷需求弹性共享的多区域电-热综合能源系统协调调度方法[J]. 山西电力, 2023(6): 6-10.
CHENG X, LIU L H, ZHANG X Y.Study on a coordinated dispatch method for multi-region electric-thermal integrated energy system considering elastic sharing of heat load demand[J]. Shanxi electric power, 2023(6): 6-10.
[10] 刘雪飞, 庞凝, 王云佳, 等. 农村综合能源系统多层协同优化运行方法[J]. 电力建设, 2022, 43(5): 63-71.
LIU X F, PANG N, WANG Y J.Multi-layer cooperative optimization operation method for rural integrated energy system[J]. Electric power construction, 2022, 43(5): 63-71.
[11] 王永利, 韩煦, 刘晨, 等. 基于生-光耦合利用的乡村电-热综合能源系统规划[J]. 电力建设, 2023, 44(3): 1-14.
WANG Y L, HAN X, LIU C, et al.Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J]. Electric power construction, 2023, 44(3): 1-14.
[12] 李振, 赵鹏翔, 朱建军, 等. 考虑不确定性的生物质电热气肥耦合系统规划方法[J]. 农业工程, 2022, 12(3): 61-70.
LI Z, ZHAO P X, ZHU J J, et al.Optimal design of biomass integrated energy system coupled with electricity, heat, gas and fertilizer under uncertainty[J]. Agricultural engineering, 2022, 12(3): 61-70.
[13] 张林垚, 吴桂联, 倪识远, 等.考虑参数自适应阶梯碳交易的含混氢-碳捕集耦合的农村综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(3): 228-241.
ZHANG L Y, WU G L,NI S Y, et al.Optimal scheduling of an integrated rural energy system with coupled hybrid hydrogen-carbon capture considering parameter adaptive stepped carbon trading[J]. Journal of electric power science and technology, 2024, 39(3): 228-241.
[14] DU S P, WU D, DAI Z, et al.Regional collaborative planning equipped with shared energy storage under multi-time scale rolling optimisation method[J]. Energy, 2023, 277: 127680.
[15] LIU X C, LIU X H, JIANG Y, et al.Photovoltaics and energy storage integrated flexible direct current distribution systems of buildings: definition, technology review, and application[J]. CSEE journal of power and energy systems, 2022, 9(3): 829-845.
[16] SCHROTENBOER A H, VEENSTRA A A T, UIT HET BROEK M A J, et al. A green hydrogen energy system: optimal control strategies for integrated hydrogen storage and power generation with wind energy[J]. Renewable and sustainable energy reviews, 2022, 168: 112744.
[17] ZHANG L H, LI S R, NIE Q Y, et al.A two-stage benefit optimization and multi-participant benefit-sharing strategy for hybrid renewable energy systems in rural areas under carbon trading[J]. Renewable energy, 2022, 189: 744-761.
[18] WANG Z, TAO H J, CAI W K, et al.Study on the multitime scale rolling optimization operation of a near-zero energy building energy supply system[J]. Energy conversion and management, 2022, 270: 116255.
[19] ZHANG R C, WANG D J, YU Z X, et al.Dual-objective optimization of large-scale solar heating systems integrated with water-to-water heat pumps for improved techno-economic performance[J]. Energy and buildings, 2023, 296: 113281.
[20] ZHANG C, XIE Y L, ZHANG H X, et al.Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system[J]. Energy, 2023, 262: 125453.
[21] LIU Z J, FAN G Y, SUN D K, et al.A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings[J]. Energy, 2022, 239: 122577.
[22] QIAO Y Y, HU F, XIONG W, et al.Multi-objective optimization of integrated energy system considering installation configuration[J]. Energy, 2023, 263: 125785.

基金

国家重点研发计划(2022YFE0117200); 国家自然科学基金(52206247); 河北省自然科学基金(E2023502040); 中央高校基本科研业务费专项资金(2022MS089)

PDF(2348 KB)

Accesses

Citation

Detail

段落导航
相关文章

/