基于㶲分析的燃料电池两级空压机优化方法

孙秀秀, 孟琪, 孙腾腾, 许红静, 张前, 张中原

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 136-141.

PDF(1817 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1817 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 136-141. DOI: 10.19912/j.0254-0096.tynxb.2024-1340

基于㶲分析的燃料电池两级空压机优化方法

  • 孙秀秀1,2, 孟琪1,2, 孙腾腾3, 许红静1,2, 张前1,2, 张中原1,2
作者信息 +

OPTIMIZATION METHOD OF FUEL CELL TWO-STAGE AIR COMPRESSOR BASED ON EXERGY ANALYSIS

  • Sun Xiuxiu1,2, Meng Qi1,2, Sun Tengteng3, Xu Hongjing1,2, Zhang Qian1,2, Zhang Zhongyuan1,2
Author information +
文章历史 +

摘要

基于燃料电池空压机试验平台测试两级空压机气动性能,并以此验证仿真模型的准确性。为提高两级空压机气动性能,利用仿真模型结合㶲分析方法研究两级空压机各部件㶲损分布及大小。结果表明:高压级㶲损比低压级高58.06 J,而高压级叶轮㶲损占整个高压级㶲损的54%。通过对叶轮㶲损因素分析发现湍流引起的不可逆损失是导致其㶲损最主要原因。

Abstract

To improve the aerodynamic performance of two-stage air compressors, a CFD model was developed and then verified via the experiments carried out on a fuel cell air compressor test bench. Based on this model, the distribution and magnitude of exergy loss for each componentwere derived. The results indicates that the exergy loss at the high-pressure end is 58.06 J higher than the low-pressure end. The exergy loss of impeller accounts for 54% of the total exergy loss at the high-pressure end. The loss factor analysis reveals that irreversible loss due to turbulence is the primary contribution.

关键词

燃料电池 / 离心空压机 / / 高低压级 / 叶轮 / 湍流 / 数值模拟

Key words

fuel cells / centrifugal compressors / exergy / high and low pressure level / impeller / turbulence / numerical simulation

引用本文

导出引用
孙秀秀, 孟琪, 孙腾腾, 许红静, 张前, 张中原. 基于㶲分析的燃料电池两级空压机优化方法[J]. 太阳能学报. 2025, 46(12): 136-141 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1340
Sun Xiuxiu, Meng Qi, Sun Tengteng, Xu Hongjing, Zhang Qian, Zhang Zhongyuan. OPTIMIZATION METHOD OF FUEL CELL TWO-STAGE AIR COMPRESSOR BASED ON EXERGY ANALYSIS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 136-141 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1340
中图分类号: TK91   

参考文献

[1] 徐玉蓉, 罗仁宏, 崔嵘, 等. 应用于氢燃料电池的均温板传热性能多因素优化研究[J]. 太阳能学报, 2024, 45(6): 86-91.
XU Y R, LUO R H, CUI R, et al.Multi-factor optimization of heat transfer performance of temperature equalizing plate applied to hydrogen fuel cell[J]. Acta energiae solaris sinica, 2024, 45(6): 86-91.
[2] 董砚, 卢禹, 雷兆明, 等. 风电消纳下多台制氢机组优化调度研究[J]. 太阳能学报, 2021, 42(11): 299-306.
DONG Y, LU Y, LEI Z M, et al.Research on optimal scheduling of multiple hydrogen production units under wind power consumption[J]. Acta energiae solaris sinica, 2021, 42(11): 299-306.
[3] 武生威, 付丽荣, 刘维峰, 等. 新型拓展流道PEMFC传质模拟与性能研究[J]. 太阳能学报, 2023, 44(5): 74-79.
WU S W, FU L R, LIU W F, et al.Mass transfer simulation and performance study of PEMFC with new extended flow channel[J]. Acta energiae solaris sinica, 2023, 44(5): 74-79.
[4] SUGAWARA T, KANAZAWA T, IMAI N, et al. Development of motorized turbo compressor for clarity fuel cell[J]. SAE technical paper Series, 2017, 1: 2017-1-1187.
[5] PAREKH P. Investment grade compressed national industrial air system audit analysis and upgrade[C]//Twenty-second National Energy Technology Conference Proceedings, Pittsburgh, USA, 2010: 270-279. 6.
[6] POSCH S, HOPFGARTNER J, DÜR L, et al. Thermal loss analysis of hermetic compressors using numerical simulation[J]. Applied thermal engineering, 2018, 130: 1580-1589.
[7] GOODARZI M.Energy and exergy analyses of a new atmospheric regenerative Brayton and Inverse Brayton cycle[J]. Energy reports, 2021, 7: 4530-4539.
[8] HAGHIGHI M, SHARIFHASSAN F.Exergy analysis and optimization of a high temperature proton exchange membrane fuel cell using genetic algorithm[J]. Case studies in thermal engineering, 2016, 8: 207-217.
[9] 张沛晔, 穆瑞琪, 刘明, 等. 太阳能热利用系统能势匹配程度的对比分析[J]. 太阳能学报, 2022, 43(9): 119-124.
ZHANG P Y, MU R Q, LIU M, et al.Energy potential analysis of solar thermal energy utilization system[J]. Acta energiae solaris sinica, 2022, 43(9): 119-124.
[10] 王修彦. 工程热力学[M]. 2版. 北京: 机械工业出版社, 2022.
WANG X Y.Engineering thermodynamics[M]. 2nd ed. Beijing: China Machine Press, 2022.
[11] DING H B, DONG Y Y, ZHANG Y, et al.Performance of supercritical carbon dioxide (sCO2) centrifugal compressors in the Brayton cycle considering non-equilibrium condensation and exergy efficiency[J]. Energy conversion and management, 2024, 299: 117849.
[12] 吴云飞. 车载燃料电池离心式空压机高效区范围扩展优化研究[D]. 长沙: 湖南大学, 2021.
WU Y F.Study on optimization of expansion of high efficiency area of centrifugal air compressor for vehicle fuel cell[D]. Changsha: Hunan University, 2021.
[13] 李俊, 罗竹梅, 郭涛, 等. 基于熵产理论的三维涡激振动低速水流能俘能分析[J]. 太阳能学报, 2023, 44(6): 45-52.
LI J, LUO Z M, GUO T, et al.Energy capture analysis of three-dimensional vortex-induced vibration of low-speed water flow based on entropy production theory[J]. Acta energiae solaris sinica, 2023, 44(6): 45-52.
[14] 张翔, 王洋, 徐小敏, 等. 低比转数离心泵叶轮内能量转换特性[J]. 农业机械学报, 2011, 42(7): 75-81.
ZHANG X, WANG Y, XU X M, et al.Energy conversion characteristic within impeller of low specific speed centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 75-81.

基金

国家自然科学基金(52305257); 天津市科技计划(22JCQNJC00110); 河北省自然科学基金(E2023202168)

PDF(1817 KB)

Accesses

Citation

Detail

段落导航
相关文章

/