基于时分复用的光伏DMPPT系统设计

夏子毅, 季海宸, 孔佳克, 葛添, 王书征, 范功铭

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 288-297.

PDF(1761 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1761 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 288-297. DOI: 10.19912/j.0254-0096.tynxb.2024-1341

基于时分复用的光伏DMPPT系统设计

  • 夏子毅, 季海宸, 孔佳克, 葛添, 王书征, 范功铭
作者信息 +

DESIGN OF PV ARRAY DMPPT SYSTEM BASED ON TIME-DIVISION MULTIPLEXING

  • Xia Ziyi, Ji Haichen, Kong Jiake, Ge Tian, Wang Shuzheng, Fan Gongming
Author information +
文章历史 +

摘要

针对传统太阳电池分布式最大功率点跟踪(DMPPT)需要多组传感器的问题,提出一种太阳电池时分复用DMPPT设计方案和时分复用采样电路。分析时分复用电路结构与控制策略、设计直流/直流电压变换器及其PI控制参数、编写DMPPT算法,以改善光伏DMPPT系统性能。基于理论分析建立仿真模型,搭建实物模型验证理论有效性,实验结果表明:所提时分复用光伏DMPPT系统仅需一组传感器即可快速、有效地跟踪每片太阳电池的最大功率点,可有效降低DMPPT的成本。

Abstract

In addressing the issue of multiple sensor requirements in traditional photovoltaic cell distributed maximum power point tracking (DMPPT), a design approach for photovoltaic cell time-division multiplexing (TDM) DMPPT is proposed, incorporating a TDM sampling circuit. This involves the analysis of TDM circuit structures and control strategies, the design of DC/DC converter along with their PI control parameters, and the development of MPPT algorithms aimed at improving the performance of the photovoltaic DMPPT system. Grounded in theoretical foundations, a simulation model is established and a physical prototype is constructed to validate theoretical integrity. Experimental findings indicate that the TDM photovoltaic DMPPT system achieves rapid and effective tracking of each photovoltaic cell's maximum power point using only one set of sensors, thereby significantly reducing the overall cost of DMPPT implementations.

关键词

最大功率跟踪 / 时分复用 / 光伏发电 / 控制理论 / PI控制

Key words

maximum power point tracking / time division multiplexing / PV power generation / control theory / PI control

引用本文

导出引用
夏子毅, 季海宸, 孔佳克, 葛添, 王书征, 范功铭. 基于时分复用的光伏DMPPT系统设计[J]. 太阳能学报. 2025, 46(12): 288-297 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1341
Xia Ziyi, Ji Haichen, Kong Jiake, Ge Tian, Wang Shuzheng, Fan Gongming. DESIGN OF PV ARRAY DMPPT SYSTEM BASED ON TIME-DIVISION MULTIPLEXING[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 288-297 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1341
中图分类号: TM615   

参考文献

[1] 张莹, 吉治璇, 潘家华. “双碳” 目标下的经济社会系统性变革: 特征、要求与路径[J]. 北京工业大学学报(社会科学版), 2024, 24(1): 101-115.
ZHANG Y, JI Z X, PAN J H.Systemic socio-economic transformation under the goals of carbon peak and carbon neutrality: characteristics, requirements and paths[J]. Journal of Beijing University of Technology(social sciences edition), 2024, 24(1): 101-115.
[2] 毛琳, 任正云. 基于变步长不完全偏微分电导增量法的MPPT控制[J]. 电源学报, 2025, 23(2): 125-132, 187.
MAO L, REN Z Y, MPPT control based on variable step size incomplete partial differential conductance increment method[J]. Journal of power supply, 2025, 23(2): 125-132, 187.
[3] 秦虓, 王涛, 卢禹卓. 一种基于Boost并联结构的新型DMPPT系统设计[J]. 电源技术, 2020, 44(12): 1796-1799.
QIN X, WANG T, LU Y Z.A new DMPPT system design based on Boost parallel structure[J]. Chinese journal of power sources, 2020, 44(12): 1796-1799.
[4] BABES B, BOUTAGHANE A, HAMOUDA N.A novel nature-inspired maximum power point tracking(MPPT)controller based on ACO-ANN algorithm for photovoltaic (PV) system fed arc welding machines[J]. Neural computing and applications, 2022, 34(1): 299-317.
[5] 张凤军, 高长伟, 黄翀阳, 等. 基于虚拟阻抗特性扰动的光伏全局最大功率跟踪控制方法[J]. 电气工程学报, 2023, 18(4): 331-339.
ZHANG F J, GAO C W, HUANG C Y, et al.Global maximum power point tracking method for photovoltaic system based on virtual impedance characteristic disturbance[J]. Journal of electrical engineering, 2023, 18(4): 331-339.
[6] 董密, 胡佳盛, 杨建, 等. 基于改进黏菌优化算法的光伏多峰MPPT控制策略[J]. 控制理论与应用, 2023, 40(8): 1440-1448.
DONG M, HU J S, YANG J, et al.An improved slime mold algorithm based MPPT strategy for multi-peak photovoltaic system[J]. Control theory & applications, 2023, 40(8): 1440-1448.
[7] RAMYAR A, IMAN-EINI H, FARHANGI S.Global maximum power point tracking method for photovoltaic arrays under partial shading conditions[J]. IEEE transactions on industrial electronics, 2017, 64(4): 2855-2864.
[8] 王乐, 陈雪, 张舒, 等. 光伏组件热斑效应研究[J].太阳能学报, 2023, 44(7): 155-161.
WANG L, CHEN X, ZHANG S, et al.Hot spot effect for photovoltaic modules[J]. Acta energiae solaris sinica, 2023, 44(7): 155-161.
[9] 王道累, 肖贝成, 姚从荣, 等. 基于改进YOLOv5的深度学习光伏组件“热斑效应”检测方法[J]. 太阳能学报, 2024, 45(8): 342-348.
WANG D L, XIAO B C, YAO C R, et al.Improved YOLOV5-based deep learning method for detecting “hot spot effect” in phtotvoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(8): 342-348.
[10] 王森, 杨超, 蒲阳, 等. 分段式自适应变步长爬山法在光伏系统MPPT中的应用[J]. 电力科学与工程, 2020, 36(3): 38-44.
WANG S, YANG C, PU Y, et al.Application of segmented adaptive variable step climbing method in MPPT of photovoltaic system[J]. Electric power science and engineering, 2020, 36(3): 38-44.
[11] MISHRA J, DAS S, KUMAR D, et al.A novel auto-tuned adaptive frequency and adaptive step-size incremental conductance MPPT algorithm for photovoltaic system[J]. International transactions on electrical energy systems, 2021, 31(10): e12813.
[12] AISSANI S, BECHOUAT M, SEDRAOUI M, et al.Synthesis of voltage PID controller to improve INC-MPPT algorithm for cascade regulation of KC200GT panel-based solar system[J]. European journal of science and technology, 2023 (47): 73-78.
[13] 宁勇, 戴瑜兴, 王镇道, 等. 不同MPPT架构光伏系统发电效率的比较研究[J]. 电子学报, 2016, 44(9): 2134-2140.
NING Y, DAI Y X, WANG Z D, et al.A comparative study of central and grouped and distributed MPPT architectures for power generation efficiency of photovoltaic system[J]. Acta electronica sinica, 2016, 44(9): 2134-2140.
[14] BOUARROUDJ N, HOUAM Y, DJARI A, et al.A linear quadratic integral controller for PV-module voltage regulation for the purpose of enhancing the classical incremental conductance algorithm[J]. Energies, 2023, 16(11): 4532.
[15] 王书征, 李先允. 一种新型自适应扰动观察法在光伏发电MPPT策略中的应用[J]. 太阳能学报, 2016, 37(9): 2393-2400.
WANG S Z, LI X Y.Application of a novel adaptive perturbation and observation method in MPPT strategy for photovoltaic power system[J]. Acta energiae solaris sinica, 2016, 37(9): 2393-2400.
[16] 江加辉, 张韬, 张传誉, 等. 基于多端口直流变换器的光伏电池DMPPT实验平台研制[J]. 实验技术与管理, 2023, 40(12): 66-73, 106.
JIANG J H, ZHANG T, ZHANG C Y,et al.Development of DMPPT experimental platform for photovoltaic based on multi-port DC converters[J]. Experimental technology and management, 2023, 40(12): 66-73, 106.
[17] 贺鑫露, 朱田华, 关童, 等. 一种多输入变换器在光伏DMPPT中的应用[J]. 电源学报, 2019,17(2): 117-123.
HE X L, ZHU T H, GUAN T, et al.Application of multiple-input converter in PV DMPPT topology[J]. Journal of power supply, 2019, 17(2): 117-123.
[18] 戴睿, 谢雁. 光伏集成组件的级联均压控制策略研究[J]. 江苏科技大学学报(自然科学版), 2022, 36(5):80-84.
DAI R, XIE Y.Research on voltage balancing control strategy for cascaded photovoltaic integrated components[J]. Journal of Jiangsu University of Science and Technology(natural science edition), 2022, 36(5): 80-84.
[19] 唐萁, 朱永强, 郝嘉诚. 基于传感器最优布置的光伏阵列阴影诊断与定位[J]. 太阳能学报, 2018, 39(2): 513-519.
TANG Q, ZHU Y Q, HAO J C.Shadow diagnosis and localization of PV array based on optimal sensor collocation[J]. Acta energiae solaris sinica, 2018, 39(2): 513-519.
[20] 王玉宝, 兰海军. 基于光纤布拉格光栅波/时分复用传感网络研究[J]. 光学学报, 2010, 30(8): 2196-2201.
WANG Y B, LAN H J.Study of fiber Bragg grating sensor system based on wavelength-division multiplexing/time-division multiplexing[J]. Acta optica sinica, 2010,30(8): 2196-2201.
[21] 茆美琴, 余世杰, 苏建徽. 带有MPPT功能的光伏阵列Matlab通用仿真模型[J]. 系统仿真学报, 2005, 17(5): 1248-1251.
MAO M Q, YU S J, SU J H.Versatile Matlab simulation model for photovoltaic array with MPPT function[J]. Journal of system simulation, 2005, 17(5): 1248-1251.
[22] 王丰, 孔鹏举, Fred C.Lee, 等. 基于分布式最大功率跟踪的光伏系统输出特性分析[J]. 电工技术学报, 2015, 30(24): 127-134.
WANG F, KONG P J, Fred C.Lee, et al. Output characteristic analysis of distributed maximum power point tracking PV system[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 127-134.
[23] 赵宏, 潘俊民. 基于Boost电路的光伏电池最大功率点跟踪系统[J]. 电力电子技术, 2004(3): 55-57.
ZHAO H, PAN J M.Photovoltaic maximum power point tracking system using boost converter[J]. power electronics, 2004(3): 55-57.
[24] 周晓燕, 权利敏, 李海滨, 等. 新型非隔离高升压DC-DC变换器[J]. 太阳能学报, 2024, 45(11): 239-246.
ZHOU X Y,QUAN L M,LI H B,et al.Novel non-isolated high boost DC-DC converter[J]. Acta energiae solaris sinica, 2024, 45(11): 239-246.
[25] 周林, 李怀花, 张林强, 等. 光伏并网系统小信号动态建模及控制参数灵敏度分析[J]. 电力系统保护与控制, 2013, 41(5): 1-5.
ZHOU L, LI H H, ZHANG L Q, et al.Small-signal dynamic modeling of grid-connected PV system and eigenvalue sensitivity analysis of the controller parameters[J]. Power system protection and control, 2013, 41(5): 1-5.
[26] 白捷予, 董存, 王铮, 等. 考虑云层遮挡的光伏发电功率超短期预测技术[J]. 高电压技术, 2023, 49(1): 159-168.
BAI J Y, DONG C, WANG Z, et al.Ultra-short-term prediction of photovoltaic power generation considering cloud cover[J]. High voltage engineering, 2023, 49(1): 159-168.
[27] BOSCH J L, ZHENG Y, KLEISSL J.Deriving cloud velocity from an array of solar radiation measurements[J]. Solar energy, 2013, 87: 196-203.
[28] JORDAN D C, KURTZ S R.Photovoltaic degradation rates—an analytical review[R]. Progress in photovolataics Energy Laboratory, 2013, 21(1): 12-29.

基金

江苏省自然科学基金(BK20210932); 江苏省大学生创新创业训练计划(202311276023Z)

PDF(1761 KB)

Accesses

Citation

Detail

段落导航
相关文章

/