考虑双碳目标的新型电力系统源-网-荷-储评价体系研究

闫群民, 屈晨光, 王磊, 董新洲, 马永翔

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 469-482.

PDF(1268 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1268 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 469-482. DOI: 10.19912/j.0254-0096.tynxb.2024-1345

考虑双碳目标的新型电力系统源-网-荷-储评价体系研究

  • 闫群民1, 屈晨光1, 王磊1, 董新洲1,2, 马永翔1
作者信息 +

STUDY ON SOURCE-GRID-LOAD-STORAGE EVALUATION SYSTEM OF NEW-TYPE POWER SYSTEM UNDER CARBON PEAKING AND CARBON-NEUTRAL GOAL

  • Yan Qunmin1, Qu Chenguang1, Wang Lei1, Dong Xinzhou1,2, Ma Yongxiang1
Author information +
文章历史 +

摘要

清洁低碳是新型电力系统的核心目标,为实现综合全面的系统低碳水平评价,建立考虑双碳目标的新型电力系统源-网-荷-储评价体系。针对目前源-网-荷低碳评价体系指标冗余、相关性强、实用性差以及缺少储能环节的问题,构建综合全面的新型电力系统源-网-荷-储低碳指标体系。针对主观赋权法与客观赋权法存在的局限性,引入层次分析法-CRITIC主客观组合赋权法,并基于最小二乘法计算综合权重。针对传统模糊评价存在的主观随意性问题,提出一种基于数据预测的改进FCM模糊综合评价方法,以数据为驱动,提高评价模型的客观性与科学性,同时保证评价模型在较长时间跨度内的适用性,实现对系统低碳水平的综合评价。最后,以中国西部某市电力系统为例,验证评价模型的有效性。

Abstract

Clean and low-carbon development is the core goal of the new-type power system. To facilitate a comprehensive evaluation of the carbonintensity, a source-grid-load-storage evaluation system of new-type power system under carbon peaking and carbon-neutral goal is established. A comprehensive new type of low-carbon indicator system for power system source-grid-load-storage is constructed to address the issues of redundant indicators, strong inter-correlation, limited practical utility, and the absence of energy storage in existing source-grid-load evaluation system. In response to the limitations of subjective and objective weighting methods, the AHP-CRITIC hybrid weighting method is introduced, and the comprehensive weights are calculated based on the least squares method. In light of China’s dual carbon goals and addressing the subjective biasof traditional fuzzy evaluation, an improved FCM fuzzy comprehensive evaluation method based on data-driven prediction is proposed. This method enhances the objectivity and scientific rigor of the evaluation model, while ensuring its applicability over extended time spans, thereby achieving a comprehensive evaluation of the low-carbon performanceof the power system. Finally, the effectiveness of the evaluation model is validated using the power system of a city in western China as a case study.

关键词

电力系统 / 价值工程 / 聚类分析 / 源-网-荷-储

Key words

electric power system / value engineering / cluster analysis / source-grid-load-storage

引用本文

导出引用
闫群民, 屈晨光, 王磊, 董新洲, 马永翔. 考虑双碳目标的新型电力系统源-网-荷-储评价体系研究[J]. 太阳能学报. 2025, 46(12): 469-482 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1345
Yan Qunmin, Qu Chenguang, Wang Lei, Dong Xinzhou, Ma Yongxiang. STUDY ON SOURCE-GRID-LOAD-STORAGE EVALUATION SYSTEM OF NEW-TYPE POWER SYSTEM UNDER CARBON PEAKING AND CARBON-NEUTRAL GOAL[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 469-482 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1345
中图分类号: TM73   

参考文献

[1] 康重庆, 杜尔顺, 郭鸿业, 等. 新型电力系统的六要素分析[J]. 电网技术, 2023, 47(5): 1741-1750.
KANG C Q, DU E S, GUO H Y, et al.Primary exploration of six essential factors in new power system[J]. Power system technology, 2023, 47(5): 1741-1750.
[2] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[3] 鞠平, 姜婷玉, 黄桦. 浅论新型电力系统的“三自”性质[J]. 中国电机工程学报, 2023,43(7): 2598-2608.
JU P, JIANG T Y, HUANG H.Brief discussion on the “three-self” nature of the new power system[J]. Proceedings of the CSEE, 2023,43(7): 2598-2608.
[4] 高洪超, 王宣元, 邱小燕, 等. 新型电力系统环境下的虚拟电厂辅助调峰市场机制及其商业模式设计[J]. 太阳能学报, 2023, 44(3): 376-385.
GAO H C, WANG X Y, QIU X Y, et al.Ranming energy market mechanism and its business model of virtual power plants oriented to new power system[J]. Acta energiae solaris sinica, 2023, 44(3): 376-385.
[5] 段铭. 基于改进LSSVM的火电企业低碳发展水平评价研究[D]. 北京: 华北电力大学, 2019.
DUAN M.Research on evaluation of low carbon development level in thermal power enterprises based on improved LSSVM model[D]. Beijing: North China Electric Power University, 2019.
[6] 王晓彬, 孟婧, 石访, 等. 煤电与清洁电源协同演进优化模型及综合评价体系研究[J]. 电力系统保护与控制, 2022, 50(13): 43-52.
WANG X B, MENG J, SHI F, et al.An optimization model and comprehensive evaluation system for the synergistic evolution of coal-fired power plants and clean power sources[J]. Power system protection and control, 2022, 50(13): 43-52.
[7] 张汝佳. 基于随机森林算法的智能电网低碳效益评价[D]. 北京: 华北电力大学, 2018.
ZHANG R J.Evaluation of the low carbon effectiveness of smart grid base on random forest[D]. Beijing: North China Electric Power University, 2018.
[8] 孙彦龙, 康重庆, 陈宋宋, 等. 低碳电网评价指标体系与方法[J]. 电力系统自动化, 2014, 38(17): 157-162.
SUN Y L, KANG C Q, CHEN S S, et al.Low-carbon power grid index system and evaluation method[J]. Automation of electric power system, 2014, 38(17): 157-162.
[9] 齐士杰. 低碳经济下的配电网综合评估[D]. 北京: 华北电力大学, 2019.
QI S J.Comprehensive evaluation of distribution networks under low-carbon economy[D]. Beijing: North China Electric Power University, 2019.
[10] 赵璞, 周满, 高建宇, 等. 基于电能替代的园区综合能源规划评价方法[J]. 中国电力, 2021, 54(4): 130-140.
ZHAO P, ZHOU M, GAO J Y, et al.Evaluation method for park-level integrated energy system based on electric power substitution[J]. Electric power, 2021, 54(4): 130-140.
[11] 孙伟卿, 谈一鸣, 曾平良, 等. 考虑电能替代的全球负荷变化趋势分析[J]. 电网技术, 2019, 43(2): 678-687.
SUN W Q, TAN Y M, ZENG P L, et al.Analysis on variation trend of global load considering electricity substitution[J]. Power system technology, 2019, 43(2): 678-687.
[12] 李艳梅, 陈增. 基于联系度优化TOPSIS法的区域电能替代潜力评估研究[J]. 电网技术, 2019, 43(2): 687-695.
LI Y M, CHEN Z.Study on regional electric energy substitution potential evaluation based on TOPSIS method of optimized connection degree[J]. Power system technology, 2019, 43(2): 687-695.
[13] 李响, 牛赛. 双碳目标下源-网-荷多层评价体系研究[J].中国电机工程学报, 2021, 41(增刊1): 178-184.
LI X, NIU S.Study on multi-layer evaluation system of source-grid-load under carbon-neutral goal[J]. Proceedings of the CSEE, 2021, 41(S1): 178-184.
[14] 罗庆, 张新燕, 罗晨, 等. 新能源发电中储能综合利用的优化评估[J]. 智慧电力, 2020, 48(9): 51-55, 62.
LUO Q, ZHANG X Y, LUO C, et al.Optimal evaluation of energy storage comprehensive utilization in new energy generation[J]. Smart power, 2020, 48(9): 51-55, 62.
[15] 修晓青, 李相俊, 李蓓, 等. 电网侧储能多重应用价值及运营策略研究[J]. 太阳能学报, 2023, 44(9): 539-545.
XIU X Q, LI X J, LI P, et al.Research on multiple application value and operation strategy of grid side energy storage[J]. Acta energiae solaris sinica, 2023, 44(9): 539-545.
[16] 郭久亿, 刘洋, 郭焱林, 等. 不同典型用户侧储能配置评估与运行优化模型[J]. 电网技术, 2020, 44(11): 4245-4254.
GUO J Y, LIU Y, GUO Y L, et al.Configuration evaluation and operation optimization model of energy storage in different typical user-side[J]. Power system technology, 2020, 44(11): 4245-4254.
[17] 范文轩, 袁至, 李骥. 考虑风-光-储协同的电池储能系统综合评价体系和选型方案研究[J]. 太阳能学报, 2024, 45(9): 158-169.
FAN W X, YUAN Z, LI J, Research on comprehensive evaluation system and selection scheme of battery energy storage system based on wind photovoltaic battery synergy[J]. Acta energiae solaris sinica, 2024, 45(9): 158-169.
[18] 付志扬, 王涛, 孔令号, 等. 基于AHP-TOPSIS算法的重要电力客户用电状态评估[J]. 电网技术, 2022, 46(10): 4095-4101.
FU Z Y, WANG T, KONG L H, et al.Power consumption state evaluation of important power customers based on AHP-TOPSIS algorithm[J]. Power system technology, 2022, 46(10): 4095-4101.
[19] 向思阳, 蔡泽祥, 刘平, 等. 基于AHP-反熵权法的配电网低碳运行模糊综合评价[J]. 电力科学与技术学报, 2019, 34(04): 69-76.
XIANG S Y, CAI Z X, LIU P, et al.Fuzzy comprehensive evaluation of the low-carbon operation of distribution network based on AHP-anti-entropy method[J]. Journal of electric power science and technology, 2019, 34(4): 69-76.
[20] 赵洪山, 李静璇, 米增强,等. 基于CRITIC和改进Grey-TOPSIS的电能质量分级评估方法[J]. 电力系统保护与控制, 2022, 50(3): 1-8.
ZHAO H S, LI J X, MI Z Q, et al.Grading evaluation of power quality based on CRITIC and improved Grey-TOPSIS[J]. Power system protection and control, 2022, 50(3): 1-8.
[21] 金骆松, 沈广, 王伟, 等. 基于极差最大化AHP-CRITIC的现货市场监测评估研究[J]. 华北电力大学学报(自然科学版), 2022, 49(5): 110-117.
JIN L S, SHEN G, WANG W, et al.Spot market monitoring and evaluation based on range maximization AHP-CRITIC[J]. Journal of North China Electric Power University (natural science edition), 2022, 49(5): 110-117.
[22] 罗宁, 贺墨琳, 高华, 等. 基于改进的AHP-CRITIC组合赋权与可拓评估模型的配电网综合评价方法[J]. 电力系统保护与控制, 2021, 49(16): 86-96.
LUO N, HE M L, GAO H, et al.Comprehensive evaluation method for a distribution network based on improved AHP-CRITIC combination weighting and an extension evaluation model[J]. Power system protection and control, 2021, 49(16): 86-96.
[23] 吴春华, 俞薛颖, 李智华, 等. 基于FCM与高斯隶属度的光伏组件健康状态诊断[J]. 电网技术, 2022, 46(5): 1887-1896.
WU C H, YU X Y, LI Z H, et al.Health state diagnosis of photovoltaic modules based on FCM and Gaussian membership[J]. Power system technology, 2022, 46(5): 1887-1896.
[24] 何婷, 赵春兰, 李屹, 等. 基于FCM聚类的模糊综合评价方法[J]. 陕西师范大学学报(自然科学版), 2023, 51(1): 111-119.
HE T, ZHAO C L, LI Y, et al.Research on fuzzy comprehensive evaluation method based on FCM clustering[J]. Journal of Shaanxi Normal University (natural science edition), 2023, 51(1): 111-119.
[25] 于军琪, 聂己开, 赵安军, 等. 基于特征挖掘的ARIMA-GRU短期电力负荷预测[J]. 电力系统及其自动化学报, 2022, 34(3): 91-99.
YU J Q, NIE Y K, ZHAO A J, et al.ARIMA-GRU short-term power load forecasting based on feature mining[J]. Proceedings of the CSU-EPSA, 2022, 34(3): 91-99.
[26] 邓艺璇, 黄玉萍, 黄周春. 基于随机森林算法的电动汽车充放电容量预测[J]. 电力系统自动化, 2021, 45(21): 181-188.
DENG Y X, HUANG Y P, HUANG Z C.Charging and discharging capacity forecasting of electric vehicles based on random forest algorithm[J]. Automation of electric power systems, 2021, 45(21): 181-188.
[27] 贾兴斌, 汪国菊, 王仁政, 等. 基于随机森林模型的太阳辐射中长期变化分析[J]. 太阳能学报, 2024, 45(5): 602-610.
JIA X B, WANG G J, WANG R Z, et al.Analysis of medium- and long-term changes in solar radiation based on random forest model[J]. Acta energiae solaris sinica, 2024, 45(5): 602-610.

基金

国家自然科学基金一般面上项目(62176146)

PDF(1268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/