针对采用双轴支架跟踪太阳光照的光伏阵列在日出日落时间段内可能产生的前后阴影遮挡问题,提出一种提升发电量的逆跟踪轨迹优化方法。首先基于太阳位置算法(SPA)计算全天太阳实时位置与日出日落时间,对比SunCalc气象数据进行验证。而后,建立支架旋转几何模型,推导并对比逆跟踪与无逆跟踪轨迹;根据单个光伏组件阴影遮挡实验数据,拟合特定条件下的遮挡比例-功率损失关系公式。为验证公式的正确性,基于HDKR各向异性辐照度模型计算不同太阳位置、旋转角度及遮挡比例下的峰值功率,并与测量值对比,最终求解峰值功率对应的最佳旋转角,实现逆跟踪轨迹优化。组件全天发电量与电机旋转耗电量的统计结果表明,优化后的逆跟踪轨迹减少功率损失,较优化前发电量进一步提升,同时驱动电机耗电量基本保持不变。
Abstract
This paper proposes a backtracking trajectory optimization method to improve power generation for photovoltaic array that uses dual-axis bracket to track sunlight, which may cause the front and rear shadow during the sunrise and sunset period. Firstly, the real-time position of the sun and the time of sunrise and sunset throughout a whole day are calculated based on the SPA algorithm, with the SunCalc meteorological data being compared for verification. Then, the bracket rotation geometry model is established to derive and compare the backtracking and non-backtracking trajectories, and the shading ratio-power loss relationship formula under specific conditions is fitted based on the shadow shading experimental datum of a single photovoltaic component. To verify this formula, the peak power values corresponding to different sun positions, rotation angles and shading ratios are calculated based on the HDKR anisotropic irradiance model, which are compared with the measured values. Finally, to achieve backtracking trajectory optimization, the optimal rotation angle corresponding to the maximum power value is solved. The statistical result of the component's power generation and motor rotation power consumption throughout a whole day shows that the optimized backtracking trajectory reduces power loss and further improves power generation than that before being optimized, while the power consumption of the driver motor remains basically unchanged.
关键词
光伏发电 /
光伏阵列 /
阴影遮挡 /
跟踪 /
双轴 /
辐照度
Key words
photovoltaic power /
photovoltaic array /
shadow occlusion /
tracking /
dual-axis /
irradiance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 路绍琰, 吴丹, 马来波, 等. 中国太阳能利用技术发展概况及趋势[J]. 科技导报, 2021, 39(19): 66-73.
LU S Y, WU D, MA L B, et al.Development situation and trend of solar energy technology industry in China[J]. Science & technology review, 2021, 39(19): 66-73.
[2] BAKOS G C.Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement[J]. Renewable energy, 2006, 31(15): 2411-2421.
[3] 陈维, 沈辉, 舒碧芬. 光伏系统跟踪效果分析[J]. 中国科学技术大学学报, 2006, 36(4): 355-359.
CHEN W, SHEN H, SHU B F.Effect of photovoltaics with Sun tracking[J]. Journal of University of Science and Technology of China, 2006, 36(4): 355-359.
[4] 单立, 张臻, 吴晋禄, 等. 基于组件遮挡功率损耗的平单轴轨迹优化方法[J]. 电源技术, 2016, 40(7): 1446-1449.
SHAN L, ZHANG Z, WU J L, et al.Optimization of single-axis trajectory based on module blocking power loss[J]. Chinese journal of power sources, 2016, 40(7): 1446-1449.
[5] 王士涛, 沈毅, 沈有国, 等. 逆跟踪技术在平单轴跟踪器上的应用[J]. 太阳能学报, 2021, 42(5): 145-149.
WANG S T, SHEN Y, SHEN Y G, et al.Backtracking technology applied on horizontal single axis tracker[J]. Acta energiae solaris sinica, 2021, 42(5): 145-149.
[6] 但扬清, 刘文颖, 朱艳伟. 局部阴影条件下光伏阵列Matlab仿真及输出效率分析[J]. 太阳能学报, 2013, 34(6): 997-1001.
DAN Y Q, LIU W Y, ZHU Y W.Matlab simulation of PV array and analysis of output efficiency under partial shading[J]. Acta energiae solaris sinica, 2013, 34(6): 997-1001.
[7] 韦雪菲, 卢泉, 龙军, 等. 相同参数不同形状局部阴影对光伏阵列输出特性的影响[J]. 太阳能学报, 2021, 42(2): 438-444.
WEI X F, LU Q, LONG J, et al.Effects of different shapes of partial shading with same parameters on output characteristics of solar cell arrays[J]. Acta energiae solaris sinica, 2021, 42(2): 438-444.
[8] 弭辙, 朱红路, 陈吉堃, 等. 基于坐标系变换的双轴跟踪聚光光伏电站布局策略[J]. 太阳能学报, 2015, 36(5): 1190-1196.
MI Z, ZHU H L, CHEN J K, et al.An array coordinate system based dual-axis tracking CPV power station layout strategy[J]. Acta energiae solaris sinica, 2015, 36(5): 1190-1196.
[9] ANJUM S, MUKHERJEE V.Irregular SuDoKu modeling of solar photovoltaic arrays for partial shading optimization[J]. Arabian journal for science and engineering, 2023, 48(11): 14977-15002.
[10] 张臻, 沈辉, 李达. 局部阴影遮挡的太阳电池组件输出特性实验研究[J]. 太阳能学报, 2012, 33(1): 5-12.
ZHANG Z, SHEN H, LI D.Experimental study on characteristics of partial shaded solar module[J]. Acta energiae solaris sinica, 2012, 33(1): 5-12.
[11] 冯志诚, 王亚辉, 吴露露, 等. 局部阴影条件下光伏组件性能实验研究[J]. 太阳能学报, 2015, 36(2): 392-398.
FENG Z C, WANG Y H, WU L L, et al.Experimental study on characteristics of PV module under partially shaded conditions[J]. Acta energiae solaris sinica, 2015, 36(2): 392-398.
[12] 吴露露, 王亚辉, 澈力格尔, 等. 局部阴影遮挡影响光伏系统性能实验研究[J]. 电源技术, 2016, 40(4): 774-776.
WU L L, WANG Y H, CHE L, et al.Experimental study of partial shadow effect on PV system[J]. Chinese journal of power sources, 2016, 40(4): 774-776.
[13] 路瑶, 何秋生, 苑伟华, 等. 太阳跟踪方法综述[J]. 自动化技术与应用, 2014, 33(5): 1-4.
LU Y, HE Q S, YUAN W H, et al.A brief introduction of the Sun tracking method[J]. Techniques of automation and applications, 2014, 33(5): 1-4.
[14] 邹杰, 冯程鹏, 高欣, 等. 基于正弦和拟合的太阳光追踪算法研究[J]. 中北大学学报(自然科学版), 2022, 43(3): 200-208.
ZOU J, FENG C P, GAO X, et al.Research on sunlight tracing algorithm based on sine sum fitting[J]. Journal of North University of China(natural science edition), 2022, 43(3): 200-208.
[15] 杜春旭, 王普, 马重芳, 等. 一种高精度太阳位置算杜[J]. 能源工程, 2010, 30(2): 41-44.
DU C X, WANG P, MA C F, et al.A high accuracy algorithm for the calculation of solar position[J]. Energy engineering, 2010, 30(2): 41-44.
[16] REDA I, ANDREAS A.Solar position algorithm for solar radiation applications[J]. Solar energy, 2004, 76(5): 577-589.
[17] 王斯成. 各类光伏方阵面辐照度的计算[J]. 太阳能, 2018(4): 19-28.
WANG S C.Calculation of the irradiance of all types of PV squares[J]. Solar energy, 2018(4): 19-28.
[18] 余俊杰, 苏中元, 史金林, 等. 一种固定式和跟踪式光伏阵列功率的估算模型[J]. 太阳能学报, 2024, 45(2): 469-474.
YU J J, SU Z Y, SHI J L, et al.A power estimation model for fixed and dual-axis tracking PV arrays[J]. Acta energiae solaris sinica, 2024, 45(2): 469-474.
[19] REINDL D T, BECKMAN W A, DUFFIE J A.Evaluation of hourly tilted surface radiation models[J]. Solar energy, 1990, 45(1): 9-17.
基金
国家自然科学基金(52167017); 江西省自然科学基金(20224BAB204054)