针对简化部件模型导致S-CO2布雷顿循环在非设计工况下性能偏离实际的问题,基于可变效率的旋转机械部件一维预测模型,构建集成系统仿真程序,研究非设计工况条件下关键参数对部件及系统热力学性能的影响规律,并分析一维预测模型与传统等效率简化模型在系统整体性能上的偏差。研究表明:主压缩机进口温度升高导致CO2密度降低,进而引起主压缩机耗功增加;然而,在系统压损和涡轮效率共同作用下,涡轮输出功率呈现相反的变化趋势。系统效率随主压缩机入口温度的升高而降低,且在低入口压力条件下降幅更显著,最大降幅出现在吸气压力7.68 MPa时,为11.6%;当主压缩机进口接近伪临界点时,系统输出较高热效率。对比分析表明,简化模型与维预测模型的系统效率最大偏差达到6.6%。
Abstract
To address the performance deviation of simplified component models for S-CO2 Brayton cycles under off-design conditions, this study establishes an integrated system simulation program based on one-dimensional predictive models incorporating variable efficiency for rotating machinery components. The program investigates the influence patterns of key parameters on the thermodynamic performance of both components and the system under off-design operation. Furthermore, it analyzes the deviation in overall system performance between the one-dimensional predictive models and traditional simplified constant-efficiency models. The research findings demonstrate that an increase in the main compressor inlet temperature results in reduced CO2 density, consequently leading to increased power consumption by the main compressor. However, under the combined effects of system pressure losses and turbine efficiency, the turbine output power exhibits an opposing trend. System efficiency decreases with rising main compressor inlet temperature, with a more pronounced reduction observed under lower inlet pressure conditions. The maximum efficiency reduction of 11.6% occurs at a suction pressure of 7.68 MPa. Higher system thermal efficiency is achieved when the main compressor inlet parameters approach the pseudo-critical point. Comparative analysis reveals that the maximum discrepancy in system efficiency between the simplified model and the one-dimensional predictive model reaches 6.6%.
关键词
压缩机 /
布雷顿循环 /
涡轮 /
一维预测模型 /
S-CO2 /
进口参数
Key words
compressor /
Brayton cycle /
turbine /
one-dimensional prediction model /
S-CO2 /
inlet parameters
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王刚, 董博祎, 姜铁骝, 等. S-CO2布雷顿循环太阳能电力淡水系统(㶲)分析[J]. 太阳能学报, 2022, 43(7): 197-202.
WANG G, DONG B Y, JIANG T L, et al.Exergy analysis of S-CO2 brayton cycle solar system for electricity and fresh water productions[J]. Acta energiae solaris sinica, 2022, 43(7): 197-202.
[2] 杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报, 2022, 43(9): 125-130.
YANG J Z, YANG Z, DUAN Y Y.Thermodynamic and economic analysis of solar power tower system based on S-CO2 cycle with different installed capacity[J]. Acta energiae solaris sinica, 2022, 43(9): 125-130.
[3] FANG Z, DONG X, TANG X.Research on gas engine waste heat recovery system based on S-CO2[J]. Combustion science and technology, 2023, 29: 543-551.
[4] 杨熠辉, 余强, 王志峰, 等. sCO2太阳能热发电流化床固体颗粒/sCO2换热器建模与仿真研究[J]. 太阳能学报, 2022, 43(8): 195-203.
YANG Y H, YU Q, WANG Z F, et al.Modeling and simulation of fluidized bed solid particle/sCO2 heat exchanger of sCO2 solar thermal power plant[J]. Acta energiae solaris sinica, 2022, 43(8): 195-203.
[5] ZHOU A Z, LI X S, REN X D, et al.Thermodynamic and economic analysis of a supercritical carbon dioxide (S-CO2) recompression cycle with the radial-inflow turbine efficiency prediction[J]. Energy, 2020, 191: 116566.
[6] LOCK A, BONE V.Off-design operation of the dry-cooled supercritical CO2 power cycle[J]. Energy conversion and management, 2022, 251: 114903.
[7] DUNIAM S, VEERARAGAVAN A.Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power[J]. Energy, 2019, 187: 115992.
[8] 马岳庚, 刘明, 严俊杰, 等. 用于高温太阳能光热发电的S-CO2循环优化研究[J]. 工程热物理学报, 2018, 39(8): 1649-1655.
MA Y G, LIU M, YAN J J, et al.Optimization of recompression supercritical brayton cycle for high temperature concentrated solar power application[J]. Journal of engineering thermophysics, 2018, 39(8): 1649-1655.
[9] 周奥铮, 李雪松, 任晓栋, 等. 基于向心透平效率预测的超临界二氧化碳循环的热力学分析[J]. 工程热物理学报, 2020, 41(12): 2891-2899.
ZHOU A Z, LI X S, REN X D, et al.Thermodynamic analysis of supercritical carbon dioxide brayton cycle based on the prediction of the radial inflow turbine efficiency[J]. Journal of engineering thermophysics, 2020, 41(12): 2891-2899.
[10] AMELI A, AFZALIFAR A, TURUNEN-SAARESTI T, et al.Centrifugal compressor design for near-critical point applications[J]. Journal of engineering for gas turbines and power, 2019, 141(3): 031016.
[11] SAEED M, KIM M H.Analysis of a recompression supercritical carbon dioxide power cycle with an integrated turbine design/optimization algorithm[J]. Energy, 2018, 165: 93-111.
[12] 张虎忠. 超临界CO2印刷电路板换热器性能研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
ZHANG H Z.Study on the thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide[D]. Beijing: The Institute of Engineering Thermophysics(Chinese Academy of Sciences), 2020.
[13] MESHRAM A, JAISWAL A K, KHIVSARA S D, et al.Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications[J]. Applied thermal engineering, 2016, 109: 861-870.
[14] PASCH J, CONBOY T, FLEMING D, et al.Supercritical CO2 recompression Brayton cycle: completed assembly description: SAND 2012-9546[R]. Albuquerque, NM: Sandia National Laboratorise, 2012.
基金
山东省自然科学基金青年基金(ZR2022QE166); 山东省科技型中小企业创新能力提升工程项目(2022TSGC2262)