新型多立柱基础的15 MW漂浮式风电机组动态响应研究

孟慧雯, 刘永前, 田德, 龙凯, 吴晓璇, 孙科

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 662-670.

PDF(1973 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1973 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 662-670. DOI: 10.19912/j.0254-0096.tynxb.2024-1371

新型多立柱基础的15 MW漂浮式风电机组动态响应研究

  • 孟慧雯1, 刘永前1, 田德1, 龙凯1, 吴晓璇1, 孙科1,2
作者信息 +

DYNAMIC RESPONSE STUDY OF 15 MW FLOATING WIND TURBINE WITH NOVEL MUTI-COLUMN FOUNDATION

  • Meng Huiwen1, Liu Yongqian1, Tian De1, Long Kai1, Wu Xiaoxuan1, Sun Ke1,2
Author information +
文章历史 +

摘要

漂浮式风电机组(FOWT)的超大型化发展使其在较小的环境载荷下产生较大的运动,基于此,提出一种适用于深远海的15 MW FOWT新型小直径多侧立柱半潜式基础(MRD)。基于ANSYS AQWA进行频域水动力计算,同时结合openFAST建立全耦合数值模型并进行动态响应分析,在额定风况下与UMaine VolturnUS-S(UMaine)参考基础进行对比。自由衰减测试证明:MRD基础在垂荡和纵摇方向的固有频率较小,产生结构共振的可能性降低;频域分析结果指出,与UMaine相比,MRD纵荡波激励减小,垂荡和纵摇附加质量和辐射阻尼增大,且纵荡、垂荡和纵摇响应幅度算子(RAOs)均减小;全耦合动态响应分析结果表明:MRD纵荡和垂荡均优于UMaine,且输出功率最大值增大。研究结果可为深远海超大型FOWT半潜式基础的概念设计提供理论参考。

Abstract

The ultra large-scale development of floating offshore wind turbines (FOWTs) enables them to generate greater motion under smaller environmental loads. Based on this, a novel 15 MW FOWT multi-column with reduced diameter semi-submersible foundation (MRD) suitable for deep sea applications is proposed. Conduct frequency-domain hydrodynamic calculations based on AQWA, and establish a fully-coupled numerical model with open FAST for time-domain simulation analysis. Assess its performance in comparison to with the UMaine VolturnUS-S (UMaine) reference foundation under rated wind conditions. The free decay test proves that the MRD foundation moderates the natural frequencies in the heave and pitch directions, and minimizes the risk of structural resonance. The frequency-domain analysis indicates that the wave excitation in the heave direction of MRD decreases, while the additional mass and radiation damping in the heave and pitch directions increase, and the RAOs in the surge, heave, and pitch directions shrink. The results of fully-coupled time-domain analysis show that MRD has better surge and heave oscillations than that of UMaine, and the maximum output power rises. The research results can provide theoretical reference for the conceptual design of semi-submersible foundations for deep-sea ultra-large FOWTs.

关键词

海上风电机组 / 半潜式基础 / 动态响应 / 多立柱设计 / 全耦合模型

Key words

offshore wind turbines / semi-submersible foundation / dynamic response / multi-column design / fully-coupled model

引用本文

导出引用
孟慧雯, 刘永前, 田德, 龙凯, 吴晓璇, 孙科. 新型多立柱基础的15 MW漂浮式风电机组动态响应研究[J]. 太阳能学报. 2025, 46(12): 662-670 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1371
Meng Huiwen, Liu Yongqian, Tian De, Long Kai, Wu Xiaoxuan, Sun Ke. DYNAMIC RESPONSE STUDY OF 15 MW FLOATING WIND TURBINE WITH NOVEL MUTI-COLUMN FOUNDATION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 662-670 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1371
中图分类号: TM614   

参考文献

[1] CHEN M S, LI C B, HAN Z L, et al.A simulation technique for monitoring the real-time stress responses of various mooring configurations for offshore floating wind turbines[J]. Ocean engineering, 2023, 278: 114366.
[2] 张礼贤, 施伟, 李昕, 等. 风冰联合作用下大型单桩海上风电机组动力特性[J]. 太阳能学报, 2023, 44(2): 59-66.
ZHANG L X, SHI W, LI X, et al.Dynamic characteristics of large monopile offshore wind turbine under wind-ice interaction[J]. Acta energiae solaris sinica, 2023, 44(2): 59-66.
[3] 姜宜辰, 于言蔚, 段英杰, 等. 半潜式风电平台主尺度参数智能优化研究[J]. 太阳能学报, 2024, 45(5): 27-31.
JIANG Y C, YU Y W, DUAN Y J, et al.Research on intelligent optimization of floating platform main scale parameters of semi-submersible wind turbines[J]. Acta energiae solaris sinica, 2024, 45(5): 27-31.
[4] BAI H Z, ZHANG M, YUAN W Y, et al.Conceptual design, parameter optimization and performance investigation of a 10 MW semi-submersible floating wind turbine in shallow water[J]. Ocean engineering, 2023, 281: 114895.
[5] ROBERTSON A, JONKMAN J, MASCIOLA M, et al.Definition of the semisubmersible floating system for phase II of OC4[R]. Golden, CO: National Renewable Energy Laboratory, 2014.
[6] 李昌, 王渊博, 蒋明真, 等. 不同风况下半潜漂浮式风力机动力学响应分析[J]. 太阳能学报, 2023, 44(4): 85-91.
LI C, WANG Y B, JIANG M Z, et al.Dynamic response analysis of semi-submersible floating wind turbine under different wind conditions[J]. Acta energiae solaris sinica, 2023, 44(4): 85-91.
[7] CAO Q, XIAO L F, GUO X X, et al.Second-order responses of a conceptual semi-submersible 10 MW wind turbine using full quadratic transfer functions[J]. Renewable energy, 2020, 153: 653-668.
[8] ZHAO Z X, SHI W, WANG W H, et al.Dynamic analysis of a novel semi-submersible platform for a 10 MW wind turbine in intermediate water depth[J]. Ocean engineering, 2021, 237: 109688.
[9] ZOU Q, LU Z Y, SHEN Y J.Short-term prediction of hydrodynamic response of a novel semi-submersible FOWT platform under wind, current and wave loads[J]. Ocean engineering, 2023, 278: 114471.
[10] 刘利琴, 韩袁昭, 肖昌水, 等. 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018, 36(1): 19-26.
LIU L Q, HAN Y Z, XIAO C S, et al.Research on dynamic response of offshore wind turbine system based on new semisubmersible-spar hybrid floating foundation[J]. The ocean engineering, 2018, 36(1): 19-26.
[11] 闫渤文, 朱恒立, 黄叙, 等. 台风非平稳性对钢格构浮式基础海上风机动力响应影响研究[J]. 工程力学, 2022, 39(7): 237-246.
YAN B W, ZHU H L, HUANG X, et al.Study on influences of typhoon non-stationarity on dynamic response of offshore wind turbine with steel lattice floating foundation[J]. Engineering mechanics, 2022, 39(7): 237-246.
[12] ZHANG L X, MICHAILIDES C, WANG Y P, et al.Moderate water depth effects on the response of a floating wind turbine[J]. Structures, 2020, 28: 1435-1448.
[13] SHI W, ZHANG L X, YOU J K, et al.Hydrodynamic characteristics of the modified V-shaped Semi-floating offshore wind turbine with heave plates[J]. Journal of physics: conference series, 2019, 1356(1): 012017.
[14] LUAN C Y, GAO Z, MOAN T.Design and analysis of a braceless steel 5-MW semi-submersible wind turbine[C]//Volume 6: Ocean Space Utilization; Ocean Renewable Energy. Busan, South Korea, 2016: V006T09A052.
[15] 黄致谦, 丁勤卫, 李春. 新型垂荡板对漂浮式风力机半潜式平台垂荡运动的抑制效果研究[J]. 动力工程学报, 2019, 39(5): 402-408.
HUANG Z Q, DING Q W, LI C.Research on heave motion inhibition for the semi-submersible platform of floating wind turbines with new heave plates[J]. Journal of Chinese Society of Power Engineering, 2019, 39(5): 402-408.
[16] MELLO P C, MALTA E B, DA SILVA R O P, et al. Influence of heave plates on the dynamics of a floating offshore wind turbine in waves[J]. Journal of marine science and technology, 2021, 26(1): 190-200.
[17] 蔡新, 张洪建, 王浩, 等. 面向深远海的新型海上风力机浮式平台水动力性能研究[J]. 中国电机工程学报, 2022, 42(12): 4339-4352.
CAI X, ZHANG H J, WANG H, et al.Research on the hydrodynamic performance of a novel floating platform of the offshore wind turbine in deep water[J]. Proceedings of the CSEE, 2022, 42(12): 4339-4352.
[18] MENG H W, LIU Y Q, TIAN D, et al.A novel conceptual design of a semi-submersible foundation for a 15 MW floating wind turbine[J]. Ocean engineering, 2024, 294: 116726.
[19] HU R Q, LE C H, ZHANG P Y, et al.Hydrodynamic modeling effect analysis of a fully submerged tension leg concept integrating the DTU 10 MW offshore wind turbine[J]. Marine structures, 2022, 83: 103179
[20] CHRISTOPHER A,VISELLI A,DAGHER H, et al. Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-Megawatt offshore reference wind turbine[R].Golden,CO:National Renewable Energy Laboratory,2020, NREL/TP-5000-76773.
[21] EVAN G, RINKER J, SETHURAMAN L, et al. Definition of the IEA 15-Megawatt Offshore Reference Wind. Golden, CO: National Renewable Energy Laboratory[R].2020, NREL/TP-5000-75698.
[22] BAYATI I, JONKMAN J, ROBERTSON A, et al.The effect of second-Order hydrodynamics on a floating offshore wind turbine[C]//5th Science of Making Torque from Wind Conference, Tech nical Univ ersity of Denmark.Copenhagen, Denmark, 2014.
[23] HANSEN M O L, SØRENSEN J N, VOUTSINAS S, et al. State of the art in wind turbine aerodynamics and aeroelasticity[J]. Progress in aerospace sciences, 2006, 42(4): 285-330.
[24] 姜军倪, 董霄峰, 王海军, 等. 海上风电结构横风向气动力阻尼特性研究[J]. 太阳能学报, 2022, 43(9): 267-272.
JIANG J N, DONG X F, WANG H J, et al.Research on cross-wind aerodynamic damping characteristics of offshore wind turbine structure[J]. Acta energiae solaris sinica, 2022, 43(9): 267-272.
[25] LI J W, BIAN J Y, CHUANG Z J, et al.Impact of pitch actuator fault on 10-MW semi-submersible floating wind turbine[J]. Ocean engineering, 2022, 254: 111375.
[26] 高巍, 董璐. ANSYS AQWA进阶应用[M]. 北京: 中国水利水电出版社, 2020: 11-54.
GAO W, DONG L.Advanced application of ANSYS AQWA[M]. Beijing: China Water & Power Press, 2020: 11-54.
[27] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[R].Golden, CO: National Renewable Energy Laboratory, 2007.
[28] JONKMAN J M.Dynamics of offshore floating wind turbines: model development and verification[J]. Wind energy, 2009, 12(5): 459-492.
[29] YANG Y, BASHIR M, MICHAILIDES C, et al.Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable energy, 2020, 161: 606-625.
[30] YANG Y, BASHIR M, MICHAILIDES C, et al.Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures[J]. Renewable energy, 2021, 176: 89-105.
[31] IEC 61400-1, Wind Turbine-part 1:design Requirements[S]. 2005.
[32] IEC 61400-1, Wind turbines-part 3:design requirements for offshore wind turbines[S], 2009.
[33] 范莉, 岳敏楠, 何鸿圣, 等. 基于NAUTILUS平台的10 MW漂浮式风力机动态响应研究[J]. 中国电机工程学报, 2025, 45(6): 2298-2308.
FAN L, YUE M N, HE H S, et al.Dynamic response study of 10 MW floating wind turbine based on the NAUTILUS platform[J]. Proceedings of the CSEE, 2025, 45(6): 2298-2308.
[34] LI Y, LI H R, WANG Z K, et al.The dynamic response of a Spar-type floating wind turbine under freak waves with different properties[J]. Marine structures, 2023, 91: 103471.
[35] SONG X C, WANG S Q, LI H J, et al.Investigation of the hydrodynamic performance of a novel semi-submersible platform with multiple small columns[J]. Journal of Ocean University of China, 2019, 18(1): 108-122.
[36] 施伟, 薛瑞宁, 侯晓彬, 等. 10 MW级半潜漂浮式风机的动力响应[J]. 船舶工程, 2021, 43(10): 1-9, 43.
SHI W, XUE R N, HOU X B, et al.Dynamic response on 10 MW semisubmersible floating offshore wind turbine[J]. Ship engineering, 2021, 43(10): 1-9, 43.
[37] QU X Q, LI Y, TANG Y G, et al.Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect[J]. Applied ocean research, 2020, 100: 102178.

基金

国家重点研发计划(2018YFB1501304)

PDF(1973 KB)

Accesses

Citation

Detail

段落导航
相关文章

/