考虑偏航效应的新型三维风力机尾流模型

马奎超, 肖鹏程, 陈银鹏, 田琳琳, 魏超, 赵宁

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 637-643.

PDF(1174 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1174 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 637-643. DOI: 10.19912/j.0254-0096.tynxb.2024-1380

考虑偏航效应的新型三维风力机尾流模型

  • 马奎超1,2, 肖鹏程3, 陈银鹏1, 田琳琳3, 魏超1, 赵宁3
作者信息 +

NOVEL THREE-DIMENSIONAL WIND TURBINE WAKE MODEL CONSIDERING YAW EFFECT

  • Ma Kuichao1,2, Xiao Pengcheng3, Chen Yinpeng1, Tian Linlin3, Wei Chao1, Zhao Ning3
Author information +
文章历史 +

摘要

该文提出一种形式简单、便于计算的新型三维偏航尾流模型(3D_k-yaw Jensen模型),以减缓尾流效应引起的发电量亏损,实现风电场的偏航优化策略。该模型基于3D_k Jensen模型进行改进,引入偏航状态下质量及动量守恒定理,综合考虑入流风况、局地地理信息、机组气动特性及运行工况等多种因素对尾流的影响,同时计及偏航效应对尾流中心偏移和尾流风速分布的影响。通过大涡模拟仿真和无人机外场测量算例,较为全面地验证了模型精度和通用性。结果表明对于不同机型、不同入流风况、不同偏航角条件,3D_k-yaw Jensen模型均较准确地预测了其横向和垂向的尾流速度分布及其发展规律。

Abstract

A new three-dimensional yaw wake model (3D_k-yaw Jensen model) with a simple form and convenient calculation is proposed in this paper, aiming to reduce the power generation loss caused by the wake effect and achieve the yaw optimization strategy of wind farms. This model is improved on the basis of the 3D_k Jensen model, introducing the mass and momentum conservation theorems under yaw conditions. It comprehensively considers the impacts of various factors on the wake, such as incoming wind conditions, local geographical information, aerodynamic characteristics and operating conditions, and also takes into account the influence of the yaw effect on the wake center offset and wake wind speed distribution. The accuracy and universality of the model are verified comprehensively through actuator disk/large eddy simulation(AD/LES) numerical simulation and unmaned aerial vehide(UAV) field measurement examples. The results demonstrate that the new 3D_k-yaw Jensen model accurately predicts the crosswind and vertical wake velocity distribution and its development pattern for different turbine types, incoming wind conditions, and yaw angle conditions. This paper provides a theoretical basis and technical support for the research on yaw optimization strategies of wind farms.

关键词

风力机 / 尾流 / 分析模型 / 偏航优化 / 尾流偏移

Key words

wind turbines / wakes / analytical models / yaw optimization / wake deflection

引用本文

导出引用
马奎超, 肖鹏程, 陈银鹏, 田琳琳, 魏超, 赵宁. 考虑偏航效应的新型三维风力机尾流模型[J]. 太阳能学报. 2025, 46(12): 637-643 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1380
Ma Kuichao, Xiao Pengcheng, Chen Yinpeng, Tian Linlin, Wei Chao, Zhao Ning. NOVEL THREE-DIMENSIONAL WIND TURBINE WAKE MODEL CONSIDERING YAW EFFECT[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 637-643 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1380
中图分类号: TK81   

参考文献

[1] ASIF M, MUNEER T.Energy supply, its demand and security issues for developed and emerging economies[J]. Renewable and sustainable energy reviews, 2007, 11(7): 1388-1413.
[2] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366: aau2027.
[3] VERMEER L J, SØRENSEN J N, CRESPO A. Wind turbine wake aerodynamics[J]. Progress in aerospace sciences, 2003, 39(6/7): 467-510.
[4] 宗豪华, 孙恩博. 水平轴风力机主动尾流控制综述[J]. 空气动力学学报, 2022, 40(4):51-68.
ZONG H H, SUN E B.Reivew of active wake control for horizontal-axis wind turbines[J]. Acta aerodynamica sinica, 2022, 40(4): 51-68.
[5] 肖京平, 陈立, 武杰, 等. 风力机风洞试验技术及研究进展[J]. 应用数学和力学, 2013, 34(10): 1059-1072.
XIAO J P, CHEN L, WU J, et al.Progress in wind turbine wind tunnel test technology and research works[J]. Applied mathematics and mechanics, 2013, 34(10): 1059-1072.
[6] 王同光, 田琳琳, 钟伟, 等. 风能利用中的空气动力学研究进展 Ⅱ: 入流和尾流特性[J]. 空气动力学学报, 2022, 40(4): 22-50.
WANG T G, TIAN L L, ZHONG W, et al.Aerodynamic research progress in wind energy Ⅱ: inflow and wake characteristics[J]. Acta aerodynamica sinica, 2022, 40(4): 22-50.
[7] KALDELLIS J K, TRIANTAFYLLOU P, STINIS P.Critical evaluation of wind turbines’ analytical wake models[J]. Renewable and sustainable energy reviews, 2021, 144: 110991.
[8] GUO N Z, ZHANG M M, LI B, et al.Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model[J]. Journal of wind engineering and industrial aerodynamics, 2021, 211: 104548.
[9] HOWLAND M F, LELE S K, DABIRI J O.Wind farm power optimization through wake steering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14495-14500.
[10] 李雄威, 徐家豪, 朱润泽, 等. 基于偏航尾流模型的风电场功率协同优化研究[J]. 太阳能学报, 2022, 43(10): 144-151.
LI X W, XU J H, ZHU R Z, et al.Study on power collaborative optimization of wind farm based on yaw wake model[J]. Acta energiae solaris sinica, 2022, 43(10):144-151.
[11] JIMÉNEZ A, CRESPO A, MIGOYA E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind energy, 2010, 13(6): 559-572.
[12] BASTANKHAH M, PORTÉ-AGEL F.Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of fluid mechanics, 2016, 806: 506-541.
[13] BASTANKHAH M, SHAPIRO C R, SHAMSODDIN S, et al.A vortex sheet based analytical model of the curled wake behind yawed wind turbines[J]. Journal of fluid mechanics, 2022, 933: A2.
[14] QIAN G W, ISHIHARA T.A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11(3): 665.
[15] DOU B Z, GUALA M, LEI L P, et al.Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions[J]. Applied energy, 2019, 242: 1383-1395.
[16] TIAN L L, ZHU W J, SHEN W Z, et al.Development and validation of a new two-dimensional wake model for wind turbine wakes[J]. Journal of wind engineering and industrial aerodynamics, 2015, 137: 90-99.
[17] 宋翌蕾, 田琳琳, 赵宁. 风力机三维尾流模型的提出与校核[J]. 太阳能学报, 2021, 42(2): 129-135.
SONG Y L, TIAN L L, ZHAO N.Proposal and validation of a new 3d wake model for wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 129-135.
[18] BURTON T, JENKINS N, SHARPE D, et al.Wind Energy Handbook[M]. West Sussex: John Wiley & Sons Ltd, 2011.
[19] LI Z B, YANG X.Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles[J]. Journal of fluid mechanics, 2021, 921(A11): 1-44.
[20] BAO T, LI Z, LI Y, et al.Wake measurement of wind turbine under yawed conditions using UAV anemometry system[J]. Journal of wind engineering & industrial aerodynamics, 2024, 249: 105720.

基金

国家重点研发计划(2022YFF0608700); 国家自然科学基金重大研究计划培育项目(92252103); 中国华电集团有限公司科技项目(CHDKJ21-01-98)

PDF(1174 KB)

Accesses

Citation

Detail

段落导航
相关文章

/