太阳能热化学制氢研究现状及应用展望

许睿飏, 杨义, 蔡雯雯, 王伊娜, 金建祥

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 114-125.

PDF(1564 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1564 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 114-125. DOI: 10.19912/j.0254-0096.tynxb.2024-1387

太阳能热化学制氢研究现状及应用展望

  • 许睿飏, 杨义, 蔡雯雯, 王伊娜, 金建祥
作者信息 +

RESEARCH PROGRESS AND APPLICATION PROSPECT OF SOLAR THERMOCHEMICAL HYDROGEN PRODUCTION

  • Xu Ruiyang, Yang Yi, Cai Wenwen, Wang Yi’na, Jin Jianxiang
Author information +
文章历史 +

摘要

介绍绿氢及其制造技术,并以太阳能热化学制氢技术(STCH)为重点,阐述该技术的基本原理、研究现状、主要特性与太阳能热发电(CSP)技术结合的可能性及未来发展方向。梳理总结以Cu-Cl循环、Mg-Cl循环为代表的Cl基循环,以HyS循环、S-I循环为代表的S基循环及其他诸如金属氧化物循环等循环的基本原理与关键参数,论证STCH在具有系统设计、经济性上劣势的同时也具备极佳的环境效益,值得进一步深入研究的观点。最后针对STCH技术面对的挑战提出未来需要加深研究的方向。

Abstract

This article introduces green hydrogen and its manufacturing technologies, with a focus on solar thermochemical hydrogen (STCH) production, elaborating on the basic principles, research status, key characteristics, and the possibility of combination with concentrating solar power (CSP). The article also discusses the future development directions of this technology. The fundamental principles and key parameters of various STCH cycles are summarized, including Cl-based cycles (e.g., Cu-Cl, Mg-Cl), S-based cycles (e.g., HyS, S-I), and other cycles such as metal oxide cycles. The article highlights that, despite challenges in system design and economic viability, STCH offers significant environmental advantages and warrants continued in-depth investigation. Finally, the challenges confronting STCH technology are addressed, and promising future research directions are outlined.

关键词

太阳能 / 光热发电 / 制氢 / 热化学循环 / 技术经济分析 / 金属氧化物

Key words

solar energy / concentrating solar power / hydrogen production / thermochemistry / cycle / techno-economic assessment / metal oxide

引用本文

导出引用
许睿飏, 杨义, 蔡雯雯, 王伊娜, 金建祥. 太阳能热化学制氢研究现状及应用展望[J]. 太阳能学报. 2025, 46(12): 114-125 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1387
Xu Ruiyang, Yang Yi, Cai Wenwen, Wang Yi’na, Jin Jianxiang. RESEARCH PROGRESS AND APPLICATION PROSPECT OF SOLAR THERMOCHEMICAL HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 114-125 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1387
中图分类号: TK91   

参考文献

[1] 扬帆, 张超, 张博超, 等. 大型液氢储罐内罐材料研究与应用进展[J]. 太阳能学报, 2023, 44(10): 557-563.
YANG F, ZHANG C, ZHANG B C, et al.Research and application progress of inner tank materials for large liquid hydrogen storage tanks[J]. Acta energiae solaris sinica, 2023, 44(10): 557-563.
[2] 廖莎, 姚长洪, 师文静, 等. 光合微生物产氢技术研究进展[J]. 当代石油石化, 2020, 28(11): 36-41.
LIAO S, YAO C H, SHI W J, et al.Advancement of bio-hydrogen production from phototrophic microorganisms[J]. Petroleum & petrochemical today, 2020, 8(11): 36-41.
[3] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[4] 杜忠明, 郑津洋, 戴剑锋, 等. 我国绿氢供应体系建设思考与建议[J]. 中国工程科学, 2022, 24(6): 64-71.
DU Z M, ZHENG J Y, DAI J F, et al.Construction of green-hydrogen supply system in China: reflections and suggestions[J]. Strategic study of CAE, 2022, 24(6): 64-71.
[5] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[6] 代佳豪, 肖刚, 祝培旺, 等. 太阳能布雷顿循环耦合蓄电池平抑光伏输出波动策略研究[J]. 动力工程学报, 2023, 43(6): 717-723.
DAI J H, XIAO G, ZHU P W, et al.Study on fluctuation suppression strategy of solar brayton cycle with storage battery on photovoltaic output power[J]. Journal of Chinese Society of Power Engineering, 2023, 43(6): 717-723.
[7] RAHMAN M Z, GASCON J.Is photocatalytic hydrogen production closer to application?[J]. Chem catalysis, 2023, 3(3): 100536.
[8] ZHOU P, NAVID I A, MA Y J, et al.Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting[J]. Nature, 2023, 613(7942): 66-70.
[9] GRIMM A, DE JONG W A, KRAMER G J. Renewable hydrogen production: a techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis[J]. International journal of hydrogen energy, 2020, 45(43): 22545-22555.
[10] DIAZ-REAL J A,HOLM T,ALONSO-VANTE N. Chapter 9-Photoelectrochemical hydrogen production (PEC H2)[M]. Amsterdam: Elsevier,2020,255-289.
[11] BORETTI A, CASTELLETTO S.The perspective of thermochemical cycles for concentrated solar energy[J]. ACS applied energy materials, 2023, 6(22): 11420-11428.
[12] 杨杰, 陈香, 刘昌昊, 等. 光催化技术在能源环境中的发展与应用[J]. 太阳能, 2024(7): 50-61.
YANG J, CHEN X, LIU C H, et al.Development and application of photocatalytic technology in energy environment[J]. Solar energy, 2024(7): 50-61.
[13] MAURYA J, GEMECHU E, KUMAR A.The development of techno-economic assessment models for hydrogen production via photocatalytic water splitting[J]. Energy conversion and management, 2023, 279: 116750.
[14] AGER J W, SHANER M R, WALCZAK K A, et al.Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting[J]. Energy & environmental science, 2015, 8(10): 2811-2824.
[15] JIA J Y, SEITZ L C, BENCK J D, et al.Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%[J]. Nature communications, 2016, 7: 13237.
[16] SHANER M R, ATWATER H A, LEWIS N S, et al.A comparative technoeconomic analysis of renewable hydrogen production using solar energy[J]. Energy & environmental science, 2016, 9(7): 2354-2371.
[17] PETERSON D, VICKERS J, DESANTIS D. Hydrogen and fuel cells program record 20006: hydrogen production cost from high temperature electrolysis-2020[EB/OL].2020-2-14. https://www.hydrogen.energy.gov/docs/hydrogenprogra mlibraries/pdfs/20006-production-cost-high-temperature-electrolysis.pdf?Status=Master.
[18] GHORBANI B, ZENDEHBOUDI S, ZHANG Y, et al.Thermochemical water-splitting structures for hydrogen production: thermodynamic, economic, and environmental impacts[J]. Energy conversion and management, 2023, 297: 117599.
[19] 方宇晨, 杜尔顺, 余扬昊, 等. 太阳能光热发电并网的综合效益量化评估方法[J]. 中国电机工程学报, 2024, 44(13): 5135-5147.
FANG Y C, DU E S, YU Y H, et al.Comprehensive benefit analytical evaluation of gird-connected concentrating solar power[J]. Proceedings of the CSEE, 2024, 44(13): 5135-5147.
[20] FUNK J E, REINSTROM R M.Energy requirements in production of hydrogen from water[J]. Industrial & engineering chemistry process design and development, 1966, 5(3): 336-342.
[21] LI X F, SUN X, SONG Q, et al.A critical review on integrated system design of solar thermochemical water-splitting cycle for hydrogen production[J]. International journal of hydrogen energy, 2022, 47(79): 33619-33642.
[22] PERRET R.Solar thermochemical hydrogen production research (STCH)[R]. Sandia National Lab(SNL-CA),Livermore, CA(United States), 2011.
[23] OZCAN H, EL-EMAM R S, AMINI HORRI B. Thermochemical looping technologies for clean hydrogen production: current status and recent advances[J]. Journal of cleaner production, 2023, 382: 135295.
[24] LEWIS M A, FERRANDON M S, TATTERSON D F, et al.Evaluation of alternative thermochemical cycles: Part Ⅲ further development of the Cu-Cl cycle[J]. International journal of hydrogen energy, 2009, 34(9): 4136-4145.
[25] SIMPSON M F, HERRMANN S D, BOYLE B D.A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction[J]. International journal of hydrogen energy, 2006, 31(9): 1241-1246.
[26] SAFARI F, DINCER I.A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production[J]. Energy conversion and management, 2020, 205: 112182.
[27] ORHAN M F, DINCER I, ROSEN M A.Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: configurations and performance[J]. International journal of hydrogen energy, 2011, 36(17): 11309-11320.
[28] DAGGUPATI V N, NATERER G F, GABRIEL K S, et al.Solid particle decomposition and hydrolysis reaction kinetics in Cu-Cl thermochemical hydrogen production[J]. International journal of hydrogen energy, 2010, 35(10): 4877-4882.
[29] ISHAQ H, DINCER I.A comparative evaluation of three CuCl cycles for hydrogen production[J]. International journal of hydrogen energy, 2019, 44(16): 7958-7968.
[30] WU W, CHEN H Y, WIJAYANTI F.Economic evaluation of a kinetic-based copperchlorine (CuCl) thermochemical cycle plant[J]. International journal of hydrogen energy, 2016, 41(38): 16604-16612.
[31] OZCAN H, DINCER I.Modeling of a new four-step magnesium-chlorine cycle with dry HCl capture for more efficient hydrogen production[J]. International journal of hydrogen energy, 2016, 41(19): 7792-7801.
[32] OZCAN H, DINCER I.Exergoeconomic optimization of a new four-step magnesium-chlorine cycle[J]. International journal of hydrogen energy, 2017, 42(4): 2435-2445.
[33] CORGNALE C, GORENSEK M B, SUMMERS W A.Review of sulfuric acid decomposition processes for sulfur-based thermochemical hydrogen production cycles[J]. Processes, 2020, 8(11): 1383.
[34] CORGNALE C, SUMMERS W A.Solar hydrogen production by the hybrid sulfur process[J]. International journal of hydrogen energy, 2011, 36(18): 11604-11619.
[35] KARACA A E, QURESHY A M M I, DINCER I. An overview and critical assessment of thermochemical hydrogen production methods[J]. Journal of cleaner production, 2023, 385: 135706.
[36] GORENSEK M,SUMMERS W,BOLTRUNIS C,et al.Hybrid sulfur progress reference design and cost analysis[R]. Savannah River Site (SRS),Aiken,SC(United States), 2009.
[37] HINKLEY J T, O’BRIEN J A, FELL C J, et al. Prospects for solar only operation of the hybrid sulphur cycle for hydrogen production[J]. International journal of hydrogen energy, 2011, 36(18): 11596-11603.
[38] BROWN N R, REVANKAR S T.A review of catalytic sulfur (VI) oxide decomposition experiments[J]. International journal of hydrogen energy, 2012, 37(3): 2685-2698.
[39] YILMAZ F, SELBAŞ R.Thermodynamic performance assessment of solar based Sulfur-Iodine thermochemical cycle for hydrogen generation[J]. Energy, 2017, 140: 520-529.
[40] GIACONIA A, GRENA R, LANCHI M, et al.Hydrogen/methanol production by sulfur-iodine thermochemical cycle powered by combined solar/fossil energy[J]. International journal of hydrogen energy, 2007, 32(4): 469-481.
[41] CHUAYBOON S, ABANADES S.Combined ZnO reduction and methane reforming for co-production of pure Zn and syngas in a prototype solar thermochemical reactor[J]. Fuel processing technology, 2021, 211: 106572.
[42] ABANADES S.CO2 and H2O reduction by solar thermochemical looping using SnO2/SnO redox reactions: thermogravimetric analysis[J]. International journal of hydrogen energy, 2012, 37(10): 8223-8231.
[43] FU M K, XU H J, MA H T, et al.Theoretical assessment of hydrogen production and multicycle energy conversion via solar thermochemical cycle based on nonvolatile SnO2[J]. Journal of energy chemistry, 2019, 38: 177-184.
[44] WANG X H, ABANADES S, CHUAYBOON S, et al.Solar-driven chemical looping reforming of methane over SrFeO3-δ-Ca0.5Mn0.5O nanocomposite foam[J]. International journal of hydrogen energy, 2022, 47(79): 33664-33676.
[45] CHARVIN P, ABANADES S, FLAMANT G, et al.Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production[J]. Energy, 2007, 32(7): 1124-1133.
[46] ZHENG K, YU Z Y, TAN S C, et al.Research progress on metal oxide oxygen carrier materials for two-step solar thermochemical cycles in the last five years[J]. Energy conversion and management, 2024, 303: 118116.
[47] KADAM R S, YADAV G D.Process integration of hydrolysis and hydrogen generation processes in the six-step Cu-Cl cycle for green hydrogen production[J]. International journal of hydrogen energy, 2024, 49: 862-876.
[48] AL-ZAREER M, DINCER I, ROSEN M A.Performance analysis of a supercritical water-cooled nuclear reactor integrated with a combined cycle, a Cu-Cl thermochemical cycle and a hydrogen compression system[J]. Applied energy, 2017, 195: 646-658.
[49] RAZI F, HEWAGE K, SADIQ R.Exergoeconomic performance evaluation of three, four, and five-step thermochemical copper-chlorine cycles for hydrogen production[J]. Journal of cleaner production, 2023, 409: 137219.
[50] KHALID F, DINCER I, ROSEN M A.Thermodynamic viability of a new three step high temperature Cu-Cl cycle for hydrogen production[J]. International journal of hydrogen energy, 2018, 43(41): 18783-18789.
[51] OZCAN H, DINCER I.Performance investigation of magnesium-chloride hybrid thermochemical cycle for hydrogen production[J]. International journal of hydrogen energy, 2014, 39(1): 76-85.
[52] TEYMOURI M, AIENEH K, SADEGHI S, et al.Energy and exergy analyses of a solar magnesium-chlorine thermochemical plant for methane production[J]. IOP conference series: materials science and Engineering, 2021, 1067(1): 012101.
[53] JAVAHERIAN A, YARI M, GHOLAMIAN E, et al.Proposal and comprehensive analysis of power and green hydrogen production using a novel integration of flame-assisted fuel cell system and Vanadium-Chlorine cycle: an application of multi-objective optimization[J]. Energy conversion and management, 2023, 277: 116659.
[54] UYGUN BATGI S, DINCER I.A solar driven hybrid sulfur cycle based integrated hydrogen production system for useful outputs[J]. International journal of hydrogen energy, 2023, 48(88): 34316-34329.
[55] SUN X, LI X F, ZENG J X, et al.Energy and exergy analysis of a novel solar-hydrogen production system with S-I thermochemical cycle[J]. Energy, 2023, 283: 128737.
[56] YANG A L, YING Z, ZHAO M Y, et al.Process modelling and assessment of thermochemical sulfur-iodine cycle for hydrogen production considering Bunsen reaction kinetics[J]. Chemical engineering and processing: process intensification, 2024, 195: 109624.
[57] SHARMA J P, KUMAR R, AHMADI M H, et al.Chemical and thermal performance analysis of a solar thermochemical reactor for hydrogen production via two-step WS cycle[J]. Energy reports, 2023, 10: 99-113.
[58] WANG B, LI X, DAI Y J, et al.Thermodynamic analysis of an epitrochoidal rotary reactor for solar hydrogen production via a water-splitting thermochemical cycle using nonstoichiometric ceria[J]. Energy conversion and management, 2022, 268: 115968.
[59] ORFILA M, LINARES M, PÉREZ A, et al. Experimental evaluation and energy analysis of a two-step water splitting thermochemical cycle for solar hydrogen production based on La0.8Sr0.2CoO3-δ perovskite[J]. International journal of hydrogen energy, 2022, 47(97): 41209-41222.
[60] 许继刚, 肖刚, 徐志强. 太阳能吸热器性能分析与防护措施研究[J]. 电力勘测设计, 2023(12): 1-5.
XU J G, XIAO G, XU Z Q.Study on performance analysis and protective method for solar power receiver[J]. Electric power survey & design, 2023(12): 1-5.
[61] 许家鸣,胡健,陈冬,等. 塔式太阳能腔体吸热器光热耦合模型与试验[J]. 太阳能学报, 2023, 44(2): 15-21.
XU J M,HU J,CHEN D,et al.Photo-thermal coupling model and experiment of solar tower cavity receiver[J]. Acta energiae solaris sinica, 2023,44(2): 15-21.
[62] HAI T, ALI M A, ALIZADEH A, et al.Using nanoparticles for performance enhancement of a solar energy-driven power/hydrogen cogeneration plant based on thermochemical cycles: multi-aspect analysis and environmental assessment[J]. International journal of hydrogen energy, 2024, 52: 520-535.
[63] PATANKAR A S, WU X Y, CHOI W, et al.Efficient solar thermochemical hydrogen production in a reactor train system with thermochemical oxygen removal[C]//Volume 6: Energy, Columbus, Ohio, USA, 2022: V006T08A052.
[64] PATANKAR A S, WU X Y, CHOI W, et al.A comparative analysis of integrating thermochemical oxygen pumping in water-splitting redox cycles for hydrogen production[J]. Solar energy, 2023, 264: 111960.
[65] MARTINEK J, WENDELIN T, MA Z W.Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage[J]. Solar energy, 2018, 166: 409-421.
[66] SCHÄPPI R, RUTZ D, DÄHLER F, et al. Drop-in fuels from sunlight and air[J]. Nature, 2021, 601(7891): 63-68.
[67] MENZ S, LAMPE J, SEEGER T, et al.Physical system behavior and energy flow analysis of a solar driven hydrogen production plant based on two-step thermochemical redox cycles[J]. International journal of hydrogen energy, 2023, 48(96): 37564-37578.
[68] MOHAMMADI A, MEHRPOOYA M.Techno-economic analysis of hydrogen production by solid oxide electrolyzer coupled with dish collector[J]. Energy conversion and management, 2018, 173: 167-178.
[69] US Department of Energy. Technical targets for hydrogen production from thermochemical water splitting[EB/OL]. https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-thermochemical-water-splitting.2024.
[70] KAYFECI M,KEçEBAş A,BAYAT M. Chapter 3- hydrogen production[M]. London: Academic press, 2019, 45-83.
[71] ZHANG S G, LI K Y, ZHU P F, et al.An efficient hydrogen production process using solar thermo-electrochemical water-splitting cycle and its techno-economic analyses and multi-objective optimization[J]. Energy conversion and management, 2022, 266: 115859.
[72] SADEGHI S, GHANDEHARIUN S.A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: thermodynamic and economic analyses and multi-objective optimization[J]. Energy, 2022, 240: 122723.
[73] MEHRPOOYA M, GHORBANI B, KHODAVERDI M.Hydrogen production by thermochemical water splitting cycle using low-grade solar heat and phase change material energy storage system[J]. International journal of energy research, 2022, 46(6): 7590-7609.
[74] TEMIZ M, DINCER I.Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems[J]. Energy, 2021, 219: 119554.
[75] SADEGHI S, GHANDEHARIUN S, NATERER G F.Exergoeconomic and multi-objective optimization of a solar thermochemical hydrogen production plant with heat recovery[J]. Energy conversion and management, 2020, 225: 113441.
[76] CUMPSTON J, HERDING R, LECHTENBERG F, et al.Design of 24/7 continuous hydrogen production system employing the solar-powered thermochemical S-I cycle[J]. International journal of hydrogen energy, 2020, 45(46): 24383-24396.
[77] ONIGBAJUMO A, SWARNKAR P, WILL G, et al.Techno-economic evaluation of solar-driven ceria thermochemical water-splitting for hydrogen production in a fluidized bed reactor[J]. Journal of cleaner production, 2022, 371: 133303.
[78] MA Z W, DAVENPORT P, SAUR G.System and technoeconomic analysis of solar thermochemical hydrogen production[J]. Renewable energy, 2022, 190: 294-308.
[79] 陈馨. 典型制氢工艺生命周期碳排放对比研究[J]. 当代石油石化, 2023, 31(1): 19-25.
CHEN X.Comparative study on life-cycle carbon emissions of typical hydrogen production processes[J]. Petroleum & petrochemical today, 2023, 31(1): 19-25.
[80] WULF C, KALTSCHMITT M.Hydrogen supply chains for mobility: environmental and economic assessment[J]. Sustainability, 2018, 10(6): 1699.
[81] MEHMETI A, ANGELIS-DIMAKIS A, ARAMPATZIS G, et al.Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies[J]. Environments, 2018, 5(2): 24.
[82] ZHANG J X, LING B, HE Y, et al.Life cycle assessment of three types of hydrogen production methods using solar energy[J]. International journal of hydrogen energy, 2022, 47(30): 14158-14168.
[83] RODRÍGUEZ-SÁNCHEZ M R, SÁNCHEZ-GONZÁLEZ A, GONZÁLEZ-GÓMEZ P A, et al. Thermodynamic and economic assessment of a new generation of subcritical and supercritical solar power towers[J]. Energy, 2017, 118: 534-544.
[84] 舒忠杰, 周斌, 马建伟, 等. 导热油和熔盐作为加热媒介的探讨分析[J]. 浙江化工, 2024, 55(4): 32-36.
SHU Z J, ZHOU B, MA J W, et al.Discussion and analysis of heat transfer oil and molten salt as heating medium[J]. Zhejiang chemical industry, 2024, 55(4): 32-36.
[85] 吴玉庭, 明苏布道, 张灿灿, 等. 三元混合碳酸熔盐热物性实验研究[J]. 储能科学与技术, 2021, 10(4): 1292-1296.
WU Y T, MING S B D, ZHANG C C, et al. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts[J]. Energy storage science and technology, 2021, 10(4): 1292-1296.
[86] 张灿灿, 吴玉庭, 鹿院卫. 低熔点混合硝酸熔盐的制备及性能分析[J]. 储能科学与技术, 2020, 9(2): 435-439.
ZHANG C C, WU Y T, LU Y W.Preparation and comparative analysis of thermophysical properties on low melting point mixed nitrate molten salts[J]. Energy storage science and technology, 2020, 9(2): 435-439.

基金

国家重点研发计划可再生能源技术重点专项(2022YFB4202402)

PDF(1564 KB)

Accesses

Citation

Detail

段落导航
相关文章

/