燃料电池两级离心空压机典型工况气动性能研究

孙秀秀, 张中原, 王林, 张前, 马腾, 孟琪

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 101-107.

PDF(1666 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1666 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 101-107. DOI: 10.19912/j.0254-0096.tynxb.2024-1421

燃料电池两级离心空压机典型工况气动性能研究

  • 孙秀秀1,2, 张中原1,2, 王林3, 张前1,2, 马腾1,2, 孟琪1,2
作者信息 +

AERODYNAMIC PERFORMANCE STUDY OF TWO-STAGE CENTRIFUGAL AIR COMPRESSOR FOR FUEL CELLS UNDER TYPICAL WORKING CONDITIONS

  • Sun Xiuxiu1,2, Zhang Zhongyuan1,2, Wang Lin3, Zhang Qian1,2, Ma Teng1,2, Meng Qi1,2
Author information +
文章历史 +

摘要

变海拔下两级空压机气动性能严重下降,无法满足高功率密度燃料电池的动态需求,为拓宽两级空压机工作极限,采用数值模拟方法研究典型工况下的气动性能。结果表明:随着进气压力的降低,两级空压机压比降低32.73%,等熵效率降低34.60%;随着进气温度的升高,两级空压机压比升高23.27%,等熵效率降低12.76%;随着空压机转速的增大,两级空压机压比升高145%,等熵效率先升高后下降,在设计转速附近达到最大值,为66.83%。

Abstract

The aerodynamic performance of a two-stage air compressor under variable altitude is severely degraded and cannot meet the dynamic demands of high-power-density fuel cells. In order to broaden the working limit of the two-stage air compressor, numerical simulation was used to study the aerodynamic performance under typical working conditions. The results show that: with the decrease of inlet pressure, the pressure ratio of the two-stage air compressor decreases by 32.73%, and the isentropic efficiency decreases by 34.60%; with the increase of inlet temperature, the pressure ratio of the two-stage air compressor increases by 23.27%, and the isentropic efficiency decreases by 12.76%; with the increase of rotational speed, the pressure ratio of the two-stage compressor increases by 145%, and the isentropic efficiency increases first and then decreases, reaching a maximum value of 66.83% near the design speed.

关键词

离心空压机 / 燃料电池 / 叶轮 / 数值模拟 / 气动性能 / 变海拔

Key words

centrifugal compressors / fuel cells / impellers / numerical simulation / aerodynamic performance / variable altitude

引用本文

导出引用
孙秀秀, 张中原, 王林, 张前, 马腾, 孟琪. 燃料电池两级离心空压机典型工况气动性能研究[J]. 太阳能学报. 2025, 46(12): 101-107 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1421
Sun Xiuxiu, Zhang Zhongyuan, Wang Lin, Zhang Qian, Ma Teng, Meng Qi. AERODYNAMIC PERFORMANCE STUDY OF TWO-STAGE CENTRIFUGAL AIR COMPRESSOR FOR FUEL CELLS UNDER TYPICAL WORKING CONDITIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 101-107 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1421
中图分类号: TM911.42    TK91   

参考文献

[1] 马涛, 孙佰清, 郭海凤, 等. 我国中长期经济发展中氢能消费量及CO2减排效果估算[J]. 太阳能学报, 2010, 31(11): 1521-1526.
MA T, SUN B Q, GUO H F, et al.Evaluation on hydrogen consumption and its reduction of CO2 emission of Chinese medium and long-term economic development[J]. Acta energiae solaris sinica, 2010, 31(11): 1521-1526.
[2] 陶丽蓉, 刘煜, 孔红兵, 等. 质子交换膜燃料电池整车辅助散热系统设计建模及分析[J]. 太阳能学报, 2023, 44(4): 299-305.
TAO L R, LIU Y, KONG H B, et al.Design, modeling and analysis of auxiliary heat dissipation system for proton exchange membrane fuel cell vehicle[J]. Acta energiae solaris sinica, 2023, 44(4): 299-305.
[3] 刘志祥, 李伦, 丁一, 等. 包含离心式空压机的大功率PEMFC空气系统喘振研究[J]. 太阳能学报, 2018, 39(1): 233-239.
LIU Z X, LI L, DING Y, et al.The surge research of heavy duty PEMFC air system with a centrifugal compressor[J]. Acta energiae solaris sinica, 2018, 39(1): 233-239.
[4] ZHANG H T, LI X G, LIU X Z, et al.Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management[J]. Applied energy, 2019, 241: 483-490.
[5] 张众杰, 刘瑞林, 杨春浩, 等. 变海拔两级离心压气机特性试验研究[J]. 车用发动机, 2020(2): 42-48.
ZHANG Z J, LIU R L, YANG C H, et al.Experimental investigation on characteristics of two-stage centrifugal compressor at variable altitudes[J]. Vehicle engine, 2020(2): 42-48.
[6] LEWIS J, CLEMENTONI E, COX T, et al.Effect of compressor inlet temperature on cycle performance for a supercritical carbon dioxide brayton cycle[C]//The 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, Pennsylvania, 2018.
[7] CLEMENTONI E M, COX T L.Effect of compressor inlet pressure on cycle performance for a supercritical carbon dioxide brayton cycle[C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, Oslo, Norway, 2018.
[8] 吴刚, 张虹, 魏名山. 离心压气机高原特性数值计算与分析[J]. 车辆与动力技术, 2014(4): 1-5.
WU G, ZHANG H, WEI M S.Numerical calculation and analysis of the plateau characteristics of centrifugal compressor[J]. Vehicle & power technology, 2014(4): 1-5.
[9] 李书奇, 刘畅, 胡力峰, 等. 高原环境增压器离心压气机特性试验研究[J]. 机械工程学报, 2016, 52(20): 151-158.
LI S Q, LIU C, HU L F, et al.Experimental investigation on centrifugal compressor performance characteristics of plateau environment for vehicle turbocharger[J]. Journal of mechanical engineering, 2016, 52(20): 151-158.
[10] 朱大鑫. 涡轮增压与涡轮增压器[M]. 北京: 机械工业出版社, 1992.
ZHU D X.Turbocharging and turbochargers[M]. Beijing: China Machine Press, 1992.
[11] 祁大同. 离心式压缩机原理[M]. 北京: 机械工业出版社, 2018: 48-49.
QI D T.Principle of centrifugal compressors[M]. Beijing: China Machine Press, 2018: 48-49.
[12] 张虹, 吴刚, 魏名山, 等. 高原环境下离心式压气机通用特性研究[J]. 兵工学报, 2015, 36(11): 2032-2037.
ZHANG H, WU G, WEI M S, et al.Research on non-dimensional characteristics of centrifugal compressor under altitude environment[J]. Acta armamentarii, 2015, 36(11): 2032-2037.
[13] 吴云飞. 车载燃料电池离心式空压机高效区范围扩展优化研究[D]. 长沙: 湖南大学, 2021.
WU Y F.Study on expansion optimization of high efficiency zone of vehicle-borne fuel cell centrifugal air compressor[D]. Changsha: Hunan University, 2021.
[14] TONG Z T, YANG X M, SHANG P X, et al.Effect of inlet condition on the performance curve of a 10 MW supercritical carbon dioxide centrifugal compressor[J]. Machines, 2022, 10(5): 359.

基金

国家自然科学基金(52305257); 天津市科技计划(22JCQNJC00110); 河北省自然科学基金(E2023202168)

PDF(1666 KB)

Accesses

Citation

Detail

段落导航
相关文章

/