基于直流链路分数阶虚拟同步的构网型变流器控制策略

杨兴武, 马朝旭, 王雅妮, 刘春, 宋晋峰, 陈国栋

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 426-436.

PDF(10488 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(10488 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 426-436. DOI: 10.19912/j.0254-0096.tynxb.2024-1426

基于直流链路分数阶虚拟同步的构网型变流器控制策略

  • 杨兴武1, 马朝旭1, 王雅妮1, 刘春1, 宋晋峰2, 陈国栋2
作者信息 +

GRID-FORMING CONVERTERS CONTROL STRATEGY BASED ON FRACTIONAL-ORDER VIRTUAL SYNCHRONIZATION OF DC-LINKS

  • Yang Xingwu1, Ma Zhaoxu1, Wang Ya’ni1, Liu Chun1, Song Jinfeng2, Chen Guodong2
Author information +
文章历史 +

摘要

为解决阻尼效应增加导致惯性效应退化的问题,该文结合直流电容电压自同步控制和分数阶控制理论,提出一种基于直流链路分数阶虚拟同步(DCFOVSC)的构网型变流器控制策略。利用直流链路电容的动态特性实现自同步,引入分数阶控制拓展控制自由度,优化系统动态特性,为系统提供足量惯性和阻尼支撑。建立DCFOVSC控制策略的小信号模型,利用频域分析讨论DCFOVSC的动态性能及影响因素,证明其能够在弱电网中稳定运行,具有良好的鲁棒性。在Matlab/Simulink中搭建基于所提控制策略的并网变流器,在有功功率变化、电网频率变化、不同电网强度、电网电压幅值变化4种工况下验证该控制策略的有效性。最后,进行实验验证。

Abstract

To address the issue of the decline in the inertia effect due to the rise in the damping effect, this paper integrates the DC capacitor voltage self-synchronization control and fractional order control theory, proposing a novel grid-forming converters based on DCFOVSC (DC link fractional order virtual synchronization control) control strategy. The dynamic characteristics of the DC link capacitance are employed to achieve self-synchronization, and fractional-order control is incorporated to augment the control degrees of freedom, optimize the dynamic characteristics of the system, and furnish sufficient inertia and damping support for the system. In this paper, a small-signal model of the DCFOVSC control strategy is established, and the dynamic performance and influencing factors of the DCFOVSC are discussed using frequency domain analysis. The analysis results demonstrate that the DCFOVSC is capable of stable operation in a weak grid with good robustness. A grid-connected converter based on the proposed control strategy is constructed in Matlab/Simulink, and the effectiveness of the control strategy is verified under four working conditions: active power variation, grid frequency variation, different grid strengths, and grid voltage amplitude variation. Finally, experimental validation is carried out.

关键词

逆变器 / 电力系统控制 / 电压控制 / 分数阶控制 / 虚拟同步控制 / 电压源逆变器

Key words

inverters / power system control / voltage control / fractional-order control / virtual synchronous control / voltage-source inverter

引用本文

导出引用
杨兴武, 马朝旭, 王雅妮, 刘春, 宋晋峰, 陈国栋. 基于直流链路分数阶虚拟同步的构网型变流器控制策略[J]. 太阳能学报. 2025, 46(12): 426-436 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1426
Yang Xingwu, Ma Zhaoxu, Wang Ya’ni, Liu Chun, Song Jinfeng, Chen Guodong. GRID-FORMING CONVERTERS CONTROL STRATEGY BASED ON FRACTIONAL-ORDER VIRTUAL SYNCHRONIZATION OF DC-LINKS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 426-436 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1426
中图分类号: TM46   

参考文献

[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3595.
XU J Y, LIU W, LIU S, et al.Current state and development trends of power system converter grid-forming control technology[J]. Power system technology, 2022, 46(9): 3586-3595.
[3] 颜湘武, 张伟超, 崔森, 等. 基于虚拟同步机的电压源逆变器频率响应时域特性和自适应参数设计[J]. 电工技术学报, 2021, 36(S1): 241-254.
YAN X W, ZHANG W C, CUI S, et al.Frequency response characteristics and adaptive parameter tuning of voltage-sourced converters under VSG control[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 241-254.
[4] 王旭斌, 杜文娟, 王海风. 弱连接条件下并网VSC系统稳定性分析研究综述[J]. 中国电机工程学报, 2018, 38(6): 1593-1604.
WANG X B, DU W J, WANG H F.Stability analysis of grid-tied VSC systems under weak connection conditions[J]. Proceedings of the CSEE, 2018, 38(6): 1593-1604.
[5] 杨银国, 林旭, 吴国炳, 等. 构网型、跟网型非同步机电源并网系统暂态同步稳定性分析[J]. 太阳能学报, 2024, 45(8): 218-228.
YANG Y G, LIN X, WU G B, et al.Analysis of transient synchroniiation stability of power system with grid-forming/grid-following nonsynchronous-machine sources[J]. Acta energiae solaris sinica, 2024, 45(8): 218-228.
[6] POGAKU N, PRODANOVIC M, GREEN T C.Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE transactions on power electronics, 2007, 22(2): 613-625.
[7] 丁明, 杨向真, 苏建徽. 基于虚拟同步发电机思想的微电网逆变电源控制策略[J]. 电力系统自动化, 2009, 33(8): 89-93.
DING M, YANG X Z, SU J H.Control strategies of inverters based on virtual synchronous generator in a microgrid[J]. Automation of electric power systems, 2009, 33(8): 89-93.
[8] 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37(2): 336-349.
ZHONG Q C.Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37(2): 336-349.
[9] 石荣亮, 兰才华, 周卢婧, 等. 弱电网下VSG的有功响应特性分析及优化策略[J]. 太阳能学报, 2024, 45(8): 182-189.
SHI R L, LAN C H, ZHOU L J, et al.Analysis and improvement strategy of VSG active power response characteristics under weak grid[J]. Acta energiae solaris sinica, 2024, 45(8): 182-189.
[10] ZHANG L D, HARNEFORS L, NEE H P.Power-synchronization control of grid-connected voltage-source converters[J]. IEEE transactions on power systems, 2010, 25(2): 809-820.
[11] 伍文华, 陈燕东, 罗安, 等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报, 2017, 37(2): 360-372.
WU W H, CHEN Y D, LUO A, et al.A virtual inertia control strategy for bidirectional grid-connected converters in DC micro-grids[J]. Proceedings of the CSEE, 2017, 37(2): 360-372.
[12] WU W H, CHEN Y D, LUO A, et al.A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines[J]. IEEE transactions on industrial electronics, 2017, 64(7): 6005-6016.
[13] HUANG W, YUAN X, RAO H, et al.A novel virtual synchronous control of VSC based HVDC transmission for inter-area connection[C]//The 16th IET International Conference on AC and DC Power Transmission (ACDC 2020). Online Conference, 2020: 1181-1186.
[14] 张琛, 蔡旭, 李征. 具有自主电网同步与弱网稳定运行能力的双馈风电机组控制方法[J]. 中国电机工程学报, 2017, 37(2): 476-486.
ZHANG C, CAI X, LI Z.Control of DFIG-based wind turbines with the capability of automatic grid-synchronization and stable operation under weak grid condition[J]. Proceedings of the CSEE, 2017, 37(2): 476-486.
[15] ARGHIR C, JOUINI T, DÖRFLER F. Grid-forming control for power converters based on matching of synchronous machines[J]. Automatica, 2018, 95: 273-282.
[16] HUANG L B, XIN H H, WANG Z, et al.A virtual synchronous control for voltage-source converters utilizing dynamics of DC-link capacitor to realize self-synchronization[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 5(4): 1565-1577.
[17] 高本锋, 刘王锋, 丁雨晴, 等. 基于惯性同步的构网型光伏并网系统次同步振荡特性分析[J]. 太阳能学报, 2024, 45(8): 398-406.
GAO B F, LIU W F, DING Y Q, et al.Analysis of sub-synchronous oscillation characteristics of grid-forming photovoltaic system based on inertial synchronization[J]. Acta energiae solaris sinica, 2024, 45(8): 398-406.
[18] HUANG L B, XIN H H, YANG H, et al.Interconnecting very weak AC systems by multiterminal VSC-HVDC links with a unified virtual synchronous control[J]. IEEE journal of emerging and selected topics in power electronics, 2018, 6(3): 1041-1053.
[19] 刘辉, 于思奇, 孙大卫, 等. 构网型变流器控制技术及原理综述[J]. 中国电机工程学报, 2025, 45(1): 277-296.
LIU H, YU S Q, SUN D W, et al.An overview of control technologies and principles for grid-forming converters[J]. Proceedings of the CSEE, 2025, 45(1): 277-296.
[20] 袁枭添, 杜正春, 李宇骏, 等. 基于直流电压同步的构网型直驱风机两阶段主动阻尼支撑控制策略[J]. 电网技术, 2023, 47(12): 4995-5007.
YUAN X T, DU Z C, LI Y J, et al.Two-stage control of DC voltage-synchronized directly-driven wind turbine for active damping support[J]. Power system technology, 2023, 47(12): 4995-5007.
[21] 秦垚, 王晗, 邓桢彦, 等. 自同步电压源永磁直驱风电机组的直流电压同步机制及其统一控制结构[J]. 高电压技术, 2023, 49(1): 31-41.
QIN Y, WANG H, DENG Z Y, et al.Synchronization mechanism and unified control structure for PMSG-based WTGs by using the DC-link voltage to realize self-synchronous voltage source control[J]. High voltage engineering, 2023, 49(1): 31-41.
[22] WANG Z X, YI H, ZHUO F, et al.Active power control of voltage-controlled photovoltaic inverter in supporting islanded microgrid without other energy sources[J]. IEEE journal of emerging and selected topics in power electronics, 2022, 10(1): 424-435.
[23] YU Y, AGUNDIS TINAJERO G D, CHAUDHARY S K, et al. A comparison of fixed-parameter active-power-oscillation damping solutions for virtual synchronous generators[C]//IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society. Toronto, ON, Canada, 2021: 1-6.
[24] YU Y, GUAN Y J, KANG W F, et al.Fractional-order virtual synchronous generator[J]. IEEE transactions on power electronics, 2023, 38(6): 6874-6879.
[25] TAO Y, LIU Q W, DENG Y, et al.Analysis and mitigation of inverter output impedance impacts for distributed energy resource interface[J]. IEEE transactions on power electronics, 2014, 30(7): 3563-3576.
[26] ZHAO L, JIN Z M, WANG X F.Analysis and damping of low-frequency oscillation for DC-link voltage-synchronized VSCs[J]. IEEE transactions on power electronics, 2023, 38(7): 8177-8189.
[27] HAN C Y, SHANG L, SU S, et al.Grid synchronization control for grid-connected voltage source converters based on voltage dynamics of DC-link capacitor[J]. Journal of modern power systems and clean energy, 2024, 12(5): 1678-1689.
[28] MONJE C A, CHEN Y Q, VINAGRE B M, et al.Fractional-order systems and controls[M]. London: Springer London, 2010.
[29] 袁涛, 杜振东. 基于径向基神经网络的参数协同自适应VSG控制策略[J]. 上海电力大学学报, 2023, 39(6): 536-542.
YUAN T, DU Z D.VSG parameter cooperative control strategy based on radial basis function neural network[J]. Journal of Shanghai University of Electric Power, 2023, 39(6): 536-542.

基金

上海市科技计划(23010501200)

PDF(10488 KB)

Accesses

Citation

Detail

段落导航
相关文章

/