漂浮式海上风力机雷击暂态效应研究

张萍, 陈嘉龙, 杨计刚, 吴伟强, 陆义海, 李练兵

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 609-616.

PDF(1446 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1446 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 609-616. DOI: 10.19912/j.0254-0096.tynxb.2024-1427

漂浮式海上风力机雷击暂态效应研究

  • 张萍1, 陈嘉龙1, 杨计刚2, 吴伟强2, 陆义海2, 李练兵3
作者信息 +

STUDY ON TRANSIENT EFFECTS OF LIGHTNING STRIKES ON FLOATING OFFSHORE WIND TURBINES

  • Zhang Ping1, Chen Jialong1, Yang Jigang2, Wu Weiqiang2, Lu Yihai2, Li Lianbing3
Author information +
文章历史 +

摘要

为研究漂浮式海上风力机的雷击综合暂态效应,首先搭建漂浮式风力机一体化电磁暂态模型,基于电磁暂态仿真程序ATP-EMTP探究海床土壤电阻率、锚固长度和系泊链长度对雷击作用下风力机塔基处过电压的影响。然后以雷击作用下塔基处过电压幅值最小和系泊链成本最低为多优化目标、系泊链长度为决策变量,利用NSGAⅡ遗传算法优化得到Pareto最优解集,结合熵权法和TOPSIS法确定系泊链的最优长度,从而实现多目标优化电磁暂态模型的构建。研究结果表明:雷击作用下塔基处过电压达kV 级,与海床土壤电阻率、锚固长度成正相关,与系泊链长度成负相关;多叶片雷击引起的过电压是单叶片雷击的1.57~3.48倍;多目标优化得到系泊链的最佳长度为41.19 m。

Abstract

This paper constructs an integrated electromagnetic transient model for floating offshore wind turbines (FOWTs) to investigate the transient effects of lightning strikes. Utilizing the ATP-EMTP simulation program, the effects of submarine ground resistivity, anchor length, and anchor chain length on tower base overvoltage during lightning events are analyzed. With the objectives of minimizing overvoltage at the tower base and mooring chain cost, the NSGAⅡ genetic algorithm is employed, using mooring chain length as the decision variable, to obtain a Pareto solution set. Optimal mooring chain length is determined through entropy weighting and TOPSIS methods, culminating in a multi-objective optimized model. Results indicate that lightning-induced overvoltage at the tower base reaches the kV level, positively correlating with seabed soil resistivity and anchorage length, and negatively with mooring chain length. Multi-blade lightning strikes produce overvoltages 1.57 to 3.48 times higher than single-blade strikes. The multi-objective optimization yields an optimal mooring chain length of 41.19 m.

关键词

风力机 / 海上风电 / 雷击 / 接地系统 / 暂态效应 / 多目标优化

Key words

wind turbines / offshore wind power / lightning strikes / grounding system / transient effect / multi-objective optimization

引用本文

导出引用
张萍, 陈嘉龙, 杨计刚, 吴伟强, 陆义海, 李练兵. 漂浮式海上风力机雷击暂态效应研究[J]. 太阳能学报. 2025, 46(12): 609-616 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1427
Zhang Ping, Chen Jialong, Yang Jigang, Wu Weiqiang, Lu Yihai, Li Lianbing. STUDY ON TRANSIENT EFFECTS OF LIGHTNING STRIKES ON FLOATING OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 609-616 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1427
中图分类号: TU856   

参考文献

[1] 李东升, 涂靖, 李炜. Spar型漂浮式风力机断缆影响及运动稳定性研究[J]. 太阳能学报, 2023, 44(11): 331-340.
LI D S, TU J, LI W.Study on mooring breakage effects and motion stability of Spar-type floating offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(11): 331-340.
[2] ALIPIO R, CONCEIÇÃO D, DE CONTI A, et al. A comprehensive analysis of the effect of frequency-dependent soil electrical parameters on the lightning response of wind-turbine grounding systems[J]. Electric power systems research, 2019, 175: 105927.
[3] 陶世祺. 海上风力发电机组雷电瞬态研究[D]. 北京: 北京交通大学, 2019.
TAO S Q.Study on lightning transient of offshore wind turbines[D]. Beijing: Beijing Jiaotong University, 2019.
[4] KRITIKOU C, PASTROMAS S, KOUTRAS K, et al.Investigation of lightning effects in offshore wind units[C]//2022 36th International Conference on Lightning Protection (ICLP). Cape Town, South Africa, 2022: 220-225.
[5] ZHANG J, HAN Y X, LI L C, et al.The impact of lightning strike to multi-blade on the lightning overvoltage and stresses of arresters in offshore wind farm[J]. IET renewable power generation, 2021, 15(13): 2814-2825.
[6] 李伟, 王森, 申巍, 等. 张力腿漂浮式海上风电机组利用锚泊系统作为接地体的可行性研究[J]. 电瓷避雷器, 2022(3): 142-147.
LI W, WANG S, SHEN W, et al.Feasibility study on TLP floating offshore wind turbine using mooring system as grounding body[J]. Insulators and surge arresters, 2022(3): 142-147.
[7] SUN Q Q, YANG L, ZHENG Z, et al.A comprehensive lightning surge analysis in offshore wind farm[J]. Electric power systems research, 2022, 211: 108259.
[8] KARIMI M, HALL M, BUCKHAM B, et al.A multi-objective design optimization approach for floating offshore wind turbine support structures[J]. Journal of ocean engineering and marine energy, 2017, 3(1): 69-87.
[9] JIANG J L, CHANG H C, KUO C C, et al.Transient overvoltage phenomena on the control system of wind turbines due to lightning strike[J]. Renewable energy, 2013, 57: 181-189.
[10] 陶世祺, 张小青, 王耀武, 等. 考虑后续雷击的风电机组雷电暂态研究[J]. 中国电机工程学报, 2018, 38(18): 5326-5334.
TAO S Q, ZHANG X Q, WANG Y W, et al.Research of lightning transient responses on wind turbines during subsequent lightning strike[J]. Proceedings of the CSEE, 2018, 38(18): 5326-5334.
[11] DE CONTI A, ALIPIO R.Single-port equivalent circuit representation of grounding systems based on impedance fitting[J]. IEEE transactions on electromagnetic compatibility, 2018, 61(5): 1683-1685.
[12] 张萍, 张海旭, 张国峰, 等. 重力式海上风力机雷电暂态响应研究[J]. 太阳能学报, 2023, 44(7): 285-290.
ZHANG P, ZHANG H X, ZHANG G F, et al.Study on lightning transient responses of gravity foundation offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(7): 285-290.
[13] SHARIATINASAB R, KERMANI B, GHOLINEZHAD J.Transient modeling of the wind farms in order to analysis the lightning related overvoltages[J]. Renewable energy, 2019, 132: 1151-1166.
[14] 赵海翔, 王晓蓉. 风电机组的雷击过电压分析[J]. 电网技术, 2004, 28(4): 27-29, 72.
ZHAO H X, WANG X R.Overvoltage analysis of wind turbines due to lightning stroke[J]. Power system technology, 2004, 28(4): 27-29, 72.
[15] 肖翔, 张小青, 李聪. 风电机组雷电过电压的仿真分析[J]. 电工技术学报, 2015, 30(24): 237-244.
XIAO X, ZHANG X Q, LI C.Simulation analysis on overvoltage in wind turbines by lightning stroke[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 237-244.
[16] ZHANG J H, SUN Q Q, ZHENG Z, et al.Lightning surge analysis for hybrid wind turbine-photovoltaic-battery energy storage system[J]. Electric power systems research, 2023, 225: 109803.
[17] 周蜜, 樊亚东, 郑钟楠, 等. 潮间带海上风电机组重力式基础接地特性[J]. 电网技术, 2015, 39(11): 3320-3326.
ZHOU M, FAN Y D, ZHENG Z N, et al.Grounding resistance characteristics of gravity foundations of offshore wind turbines in the intertidal zone[J]. Power system technology, 2015, 39(11): 3320-3326.
[18] TAO S Q, ZHANG X Q, WANG Y W, et al.Transient behavior analysis of offshore wind turbines during lightning strike to multi-blade[J]. IEEE access, 2018, 6: 22070-22083.
[19] LIU F F, CHEN Y Y, QIN W, et al.Optimal design of liquid cooling structure with bionic leaf vein branch channel for power battery[J]. Applied thermal engineering, 2023, 218: 119283.
[20] 苏开, 梁琼, 刘俊, 等. 基于熵权-TOPSIS模型的水培生菜适宜种植密度优化[J]. 石河子大学学报(自然科学版), 2024, 42(3): 281-287.
SU K, LIANG Q, LIU J, et al.Optimizing planting density of hydroponic lettuce based on entropy weight-TOPSIS model[J]. Journal of Shihezi University (natural science), 2024, 42(3): 281-287.
[21] HU Y J, WU L Z, SHI C, et al.Research on optimal decision-making of cloud manufacturing service provider based on grey correlation analysis and TOPSIS[J]. International journal of production research, 2020, 58(3): 748-757.
[22] 卜康正, 赵勇, 郑先昌. 基于NSGA2遗传算法的地铁隧道上方基坑工程优化设计[J]. 铁道科学与工程学报, 2021, 18(2): 459-467.
BU K Z, ZHAO Y, ZHENG X C.Optimization design for foundation pit above metro tunnel based on NSGA2 genetic algorithm[J]. Journal of railway science and engineering, 2021, 18(2): 459-467.

基金

河北省省级科技计划(21567605H); 基于无线网络全覆盖的海上风电安全生产管理平台建设研究与应用(XT-KJ-2021012)

PDF(1446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/