基于自适应状态切换的混合电解槽阵列滚动优化策略

胡亚峰, 赵希, 杨文龙, 朱文超, 谢长君

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 99-109.

PDF(3218 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3218 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 99-109. DOI: 10.19912/j.0254-0096.tynxb.2024-1429
第二十七届中国科协年会学术论文

基于自适应状态切换的混合电解槽阵列滚动优化策略

  • 胡亚峰1, 赵希1, 杨文龙2, 朱文超3, 谢长君1
作者信息 +

ROLLING OPTIMIZATION STRATEGY OF HYBRID ELECTROLYZERS ARRAY BASED ON ADAPTIVE STATE SWITCHING

  • Hu Yafeng1, Zhao Xi1, Yang Wenlong2, Zhu Wenchao3, Xie Changjun1
Author information +
文章历史 +

摘要

为提高水电解制氢系统与风电的适配性,针对碱性电解槽与质子交换膜电解槽构成的混合制氢系统功率分配问题,提出一种基于自适应状态切换的混合电解槽阵列滚动优化策略。在简单启停策略和常规滚动优化策略下对比混合系统和单一系统的性能,混合系统的效率分别提升2.81和5.92个百分点。此外,还将3种不同的策略应用于混合制氢系统进行比较分析,结果显示所提策略使电解槽间负荷更加均衡,系统效率比简单启停策略提升4.57个百分点,日产氢量增加0.354 t,提升16.40%,电解槽平均利用率提高18.82个百分点,风能利用率提升13.71个百分点。

Abstract

To enhance the compatibility between hydrogen production systems and wind power, a rolling optimization strategy for a hybrid electrolyzers array, based on adaptive state switching, is proposed to address the power distribution challenges in hybrid hydrogen production systems comprising alkaline electrolyzers and proton exchange membrane electrolyzers. The performance of the hybrid system is compared to that of a single electrolyzers system under a basic start-stop strategy and a conventional rolling optimization approach. The results indicate that the efficiency of the hybrid system improved by 2.81 and 5.92 percentage point, respectively. Furthermore, three distinct strategies are applied to the hybrid hydrogen production system for comparative analysis. The findings reveal that the newly proposed hybrid electrolyzers array rolling optimization strategy, based on adaptive state switching, achieves a more balanced load distribution among electrolyzers, leading to a 4.57 percentage point increase in system efficiency compared to the simple start-stop strategy. Additionally, daily hydrogen production increases by 0.354 tons (16.40%). The average electrolyzer utilization rate is improved by 18.82 percentage point, while wind energy utilization rate is increased by 13.71 percentage point.

关键词

风电 / 制氢 / 电解槽 / 功率分配 / 混合制氢系统 / 自适应状态切换 / 滚动优化

Key words

wind power / hydrogen production / electrolytic cells / power distribution / hybrid hydrogen production system / adaptive state switching / rolling optimization

引用本文

导出引用
胡亚峰, 赵希, 杨文龙, 朱文超, 谢长君. 基于自适应状态切换的混合电解槽阵列滚动优化策略[J]. 太阳能学报. 2025, 46(6): 99-109 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1429
Hu Yafeng, Zhao Xi, Yang Wenlong, Zhu Wenchao, Xie Changjun. ROLLING OPTIMIZATION STRATEGY OF HYBRID ELECTROLYZERS ARRAY BASED ON ADAPTIVE STATE SWITCHING[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 99-109 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1429
中图分类号: TK91   

参考文献

[1] 周玮, 彭昱, 孙辉, 等. 含风电场的电力系统动态经济调度[J]. 中国电机工程学报, 2009, 29(25): 13-18.
ZHOU W, PENG Y, SUN H, et al.Dynamic economic dispatch in wind power integrated system[J]. Proceedings of the CSEE, 2009, 29(25): 13-18.
[2] 赵靖英, 门孝伟, 姚帅亮. 基于风电机组聚类的风电场有功分层分配策略[J]. 太阳能学报, 2023, 44(12): 306-315.
ZHAO J Y, MEN X W, YAO S L.Hierarchical active power distribution strategy of wind farms based on wind turbines clustering[J]. Acta energiae solaris sinica, 2023, 44(12): 306-315.
[3] ZHENG Y, HUANG C J, TAN J, et al.Off-grid wind/hydrogen systems with multi-electrolyzers: optimized operational strategies[J]. Energy conversion and management, 2023, 295: 117622.
[4] 林涛, 赵丹阳, 严寒. 风电消纳下多型号制氢机组阵列优化调度研究[J]. 太阳能学报, 2022, 43(11): 466-473.
LIN T, ZHAO D Y, YAN H.Research on optimal scheduling of multi-model hydrogen generator array under wind power consumption[J]. Acta energiae solaris sinica, 2022, 43(11): 466-473.
[5] 卢捷, 于立军, 郑培, 等. 风氢耦合系统超前控制策略研究[J]. 太阳能学报, 2022, 43(3): 53-60.
LU J, YU L J, ZHENG P, et al.Research on advanced control strategy of wind hydrogen coupling system[J]. Acta energiae solaris sinica, 2022, 43(3): 53-60.
[6] 胡可崴, 李浩, 王创, 等. 电解水制氢的多物理场建模与监控技术综述[J]. 电力自动化设备, 2023, 43(12): 3-13.
HU K W, LI H, WANG C, et al.Review on multiphysics modeling and regulation of power-to-hydrogen electrolyzer[J]. Electric power automation equipment, 2023, 43(12): 3-13.
[7] KHALIGH V, GHEZELBASH A, ZAREI M, et al.Efficient integration of alkaline water electrolyzer: a model predictive control approach for a sustainable low-carbon district heating system[J]. Energy conversion and management, 2023, 292: 117404.
[8] FANG R M, LIANG Y.Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International journal of hydrogen energy, 2019, 44(46): 25104-25111.
[9] CHENG H R, XIA Y H, WEI W, et al.Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources[J]. International journal of hydrogen energy, 2024, 54: 700-712.
[10] FALCÃO D S, PINTO A M F R. A review on PEM electrolyzer modelling: guidelines for beginners[J]. Journal of cleaner production, 2020, 261: 121184.
[11] HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D. Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption[J]. International journal of hydrogen energy, 2020, 45(29): 14625-14639.
[12] LU X Y, DU B H, ZHOU S P, et al.Optimization of power allocation for wind-hydrogen system multi-stack PEM water electrolyzer considering degradation conditions[J]. International journal of hydrogen energy, 2023, 48(15): 5850-5872.
[13] 闫旭鹏, 卢启辰, 任志博, 等. 水电解制氢用商业化阴离子交换膜发展现状[J]. 储能科学与技术, 2023, 12(9): 2811-2822.
YAN X P, LU Q C, REN Z B, et al.Progress in developing commercial anion exchange membranes for hydrogen production by water electrolysis[J]. Energy storage science and technology, 2023, 12(9): 2811-2822.
[14] 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学, 2020, 26(2): 212-229.
ZHANG W Q, YU B.Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J]. Journal of electrochemistry, 2020, 26(2): 212-229.
[15] LIU X Y, ZOU J, LONG R, et al.Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system[J]. Renewable energy, 2023, 216: 119074.
[16] HONG Z P, WEI Z X, HAN X J.Optimization scheduling control strategy of wind-hydrogen system considering hydrogen production efficiency[J]. Journal of energy storage, 2022, 47: 103609.
[17] 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94.
CAI G W, CHEN C, KONG L G, et al.Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 84-94.
[18] SHIVA KUMAR S, HIMABINDU V.Hydrogen production by PEM water electrolysis: a review[J]. Materials science for energy technologies, 2019, 2(3): 442-454.
[19] IBÁÑEZ-RIOJA A, JÄRVINEN L, PURANEN P, et al. Off-grid solar PV-wind power-battery-water electrolyzer plant: simultaneous optimization of component capacities and system control[J]. Applied energy, 2023, 345: 121277.
[20] 李军舟, 赵晋斌, 曾志伟, 等. 具有动态调节特性的光伏制氢双阵列直接耦合系统优化策略[J]. 电网技术, 2022, 46(5): 1712-1721.
LI J Z, ZHAO J B, ZENG Z W, et al.Optimization strategy of photovoltaic hydrogen production dual array direct coupling system with dynamic regulation characteristics[J]. Power system technology, 2022, 46(5): 1712-1721.
[21] ABDIN Z, WEBB C J, GRAY E M.Modelling and simulation of a proton exchange membrane(PEM) electrolyser cell[J]. International journal of hydrogen energy, 2015, 40(39): 13243-13257.
[22] MAJUMDAR A, HAAS M, ELLIOT I, et al.Control and control-oriented modeling of PEM water electrolyzers: a review[J]. International journal of hydrogen energy, 2023, 48(79): 30621-30641.
[23] YODWONG B, GUILBERT D, PHATTANASAK M, et al.Faraday's efficiency modeling of a proton exchange membrane electrolyzer based on experimental data[J]. Energies, 2020, 13(18): 4792.
[24] SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International journal of hydrogen energy, 2018, 43(45): 20332-20345.
[25] 程浩然, 夏杨红, 何杭航, 等. 适用于可再生能源制氢的大容量碱液电解槽建模研究[J]. 太阳能学报, 2024, 45(2): 291-299.
CHENG H R, XIA Y H, HE H H, et al.Modeling of large-capacity alkaline electrolyzers for hydrogen production from renewable energy[J]. Acta energiae solaris sinica, 2024, 45(2): 291-299.
[26] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[27] LI Y Y, DENG X T, ZHANG T, et al.Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system[J]. Applied energy, 2023, 331: 120413.
[28] 李建林, 梁忠豪, 赵文鼎, 等. 混合电解槽制氢系统选型及评估方法[J]. 高电压技术, 2024, 50(6): 2653-2662.
LI J L, LIANG Z H, ZHAO W D, et al.Selection and evaluation method of hydrogen production system in hybrid electrolytic cell[J]. High voltage engineering, 2024, 50(6): 2653-2662.

基金

国家重点研发计划(2020YFB1506802); 广东省重点领域研发计划(2020B0909040004)

PDF(3218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/