构网型控制提升系统电网强度机理探究

房幸龙, 胡阳, 宋子秋, 刘吉臻

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 406-416.

PDF(2354 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2354 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 406-416. DOI: 10.19912/j.0254-0096.tynxb.2024-1443

构网型控制提升系统电网强度机理探究

  • 房幸龙1,2, 胡阳1,2, 宋子秋1,2, 刘吉臻1,2
作者信息 +

MECHANISM RESEARCH OF ENHANCEMENT POWER GRID STRENGTH BY GRID-FORMING CONTROL

  • Fang Xinglong1,2, Hu Yang1,2, Song Ziqiu1,2, Liu Jizhen1,2
Author information +
文章历史 +

摘要

为深入探究构网型控制提升系统稳定性的机理,首先建立跟网型与构网型控制变流器的数学模型,通过特征值分析法对二者的并网振荡特性进行分析。其次,针对传统新能源系统短路比计算方法未考虑构网型变流器接入的问题,提出一种用于构网型与跟网型机组混合系统的短路比计算修正方法,以修正构网型机组接入系统后引起的短路比变化。随后,定量分析构网型控制新能源机组接入跟网型机组系统后引起的系统短路容量及等效短路比的变化规律,从构网型控制提升电力系统电网强度的角度揭示构网型机组占比增加对系统电网强度及稳定性的提升能力,并基于仿真模型验证所得结论的有效性。

Abstract

In order to further investigate the mechanism of grid-forming control to enhance the stability of the system, this paper firstly establishes the mathematical models of grid-following and grid-forming control, and analyzes the grid-connected oscillation characteristics of the two through the eigenvalue analysis method. Secondly, based on the deficiencies in the calculation of short-circuit ratio of existing renewable energy stations, a correction method for the calculation of equivalent short-circuit ratio of hybrid systems of grid-following and grid-forming is proposed. Subsequently, the article quantitatively deduces the change rule of system short-circuit capacity and equivalent short-circuit ratio caused by the access of grid-forming control units to the system of grid-following units, proves that the process of increasing the proportion of grid-forming units can effectively improve the stability of the system from the point of view of improving the system short-circuit ratio of grid-following units, and verifies the validity of the obtained conclusions based on the electromagnetic transient simulation model.

关键词

构网型控制 / 跟网型控制 / 系统稳定性 / 电网强度 / 短路比 / 新能源系统

Key words

grid-forming control / grid-following control / system stability / power grid strength / short-circuit ratio / renewable energy system

引用本文

导出引用
房幸龙, 胡阳, 宋子秋, 刘吉臻. 构网型控制提升系统电网强度机理探究[J]. 太阳能学报. 2025, 46(12): 406-416 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1443
Fang Xinglong, Hu Yang, Song Ziqiu, Liu Jizhen. MECHANISM RESEARCH OF ENHANCEMENT POWER GRID STRENGTH BY GRID-FORMING CONTROL[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 406-416 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1443
中图分类号: TM614   

参考文献

[1] 程静, 苏乐, 岳雷. 新能源接入电力系统的宽频振荡风险识别与抑制[J]. 太阳能学报, 2023, 44(11): 565-574.
CHENG J, SU L, YUE L.Power system broadband oscillation risk identification and suppression for new energy access[J]. Acta energiae solaris sinica, 2023, 44(11): 565-574.
[2] 马燕峰, 陈鑫, 刘新元, 等. 考虑新能源场站间相互作用的宽频振荡特性研究[J]. 太阳能学报, 2024, 45(1): 563-573.
MA Y F, CHEN X, LIU X Y, et al.Study on broadband oscillation characteristics considering interaction between new energy stations[J]. Acta energiae solaris sinica, 2024, 45(1): 563-573.
[3] 秦世耀, 齐琛, 李少林, 等. 电压源型构网风电机组研究现状及展望[J]. 中国电机工程学报, 2023, 43(4): 1314-1334.
QIN S Y, QI C, LI S L, et al.Review of the voltage-source grid forming wind turbine[J]. Proceedings of the CSEE, 2023, 43(4): 1314-1334.
[4] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
ZHOU X X, LU Z X, LIU Y M, et al.Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[5] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[6] GWEC. Global wind report2023 [R/OL]. [2023-07-16]. https://gwec.net/global-wind-report-2023/.
[7] XUE Z J, LI S Y, LI J D, et al.OFDM radar and communication joint system using opto-electronic oscillator with phase noise degradation analysis and mitigation[J]. Journal of lightwave technology, 2022, 40(13): 4101-4109.
[8] WANG X F, BLAABJERG F, WU W M.Modeling and analysis of harmonic stability in an AC power-electronics-based power system[J]. IEEE transactions on power electronics, 2014, 29(12): 6421-6432.
[9] MATEVOSYAN J, BADRZADEH B, PREVOST T, et al.Grid-forming inverters: are they the key for high renewable penetration?[J]. IEEE power and energy magazine, 2019, 17(6): 89-98.
[10] 刘朋印, 谢小荣, 李原, 等. 构网型控制改善跟网型变流器次/超同步振荡稳定性的机理和特性分析[J]. 电网技术, 2024, 48(3): 990-997.
LIU P Y, XIE X R, LI Y, et al.Mechanism and characteristics of grid-forming control for improving sub/super synchronous oscillation stability of grid-following-based grid-connected converter[J]. Power system technology, 2024, 48(3): 990-997.
[11] 刘其辉, 高瑜, 郭天飞, 等. 风电并网系统阻抗稳定性分析及次同步振荡因素研究[J]. 太阳能学报, 2022, 43(1): 89-100.
LIU Q H, GAO Y, GUO T F, et al.Research on impedance stability analysis and subsynchronous oscillation factors of wind power grid-connected system[J]. Acta energiae solaris sinica, 2022, 43(1): 89-100.
[12] 徐政. 新型电力系统背景下电网强度的合理定义及其计算方法[J]. 高电压技术, 2022, 48(10): 3805-3819.
XU Z.Reasonable definition and calculation method of power grid strength under the background of new type power systems[J]. High voltage engineering, 2022, 48(10): 3805-3819.
[13] YANG C R, HUANG L B, XIN H H, et al.Placing grid-forming converters to enhance small signal stability of PLL-integrated power systems[J]. IEEE transactions on power systems, 2021, 36(4): 3563-3573.
[14] ZHANG H B, XIANG W, LIN W X, et al.Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges[J]. Journal of modern power systems and clean energy, 2021, 9(6): 1239-1256.
[15] 蔡旭, 秦垚, 王晗, 等. 风电机组的自同步电压源控制研究综述[J]. 高电压技术, 2023, 49(6): 2478-2490.
CAI X, QIN Y, WANG H, et al.Review of self-synchronous voltage source control for wind turbine generator[J]. High voltage engineering, 2023, 49(6): 2478-2490.
[16] ROCABERT J, LUNA A, BLAABJERG F, et al.Control of power converters in AC microgrids[J]. IEEE transactions on power electronics, 2012, 27(11): 4734-4749.
[17] UNRUH P, NUSCHKE M, STRAUß P, et al.Overview on grid-forming inverter control methods[J]. Energies, 2020, 13(10): 2589.
[18] DE BRABANDERE K, BOLSENS B, VAN DEN KEYBUS J, et al. A voltage and frequency droop control method for parallel inverters[J]. IEEE transactions on power electronics, 2007, 22(4): 1107-1115.
[19] 何鑫, 左芸裴, 杨映海, 等. 基于虚拟同步机参数自适应调节的并网逆变器控制策略研究[J]. 太阳能学报, 2024, 45(7): 259-266.
HE X, ZUO Y P, YANG Y H, et al.Research on control strategy of grid-connected inverter based on parameter adaptive adjustment of virtual synchronous generator[J]. Acta energiae solaris sinica, 2024, 45(7): 259-266.
[20] COLOMBINO M, GROß D, BROUILLON J S, et al.Global phase and magnitude synchronization of coupled oscillators with application to the control of grid-forming power inverters[J]. IEEE transactions on automatic control, 2019, 64(11): 4496-4511.
[21] ARGHIR C, DÖRFLER F. The electronic realization of synchronous machines: model matching, angle tracking, and energy shaping techniques[J]. IEEE transactions on power electronics, 2020, 35(4): 4398-4410.
[22] COLLADOS-RODRIGUEZ C, CHEAH-MANE M, PRIETO-ARAUJO E, et al.Stability and operation limits of power systems with high penetration of power electronics[J]. International journal of electrical power & energy systems, 2022, 138: 107728.
[23] 张海华, 刘福才. 考虑风电消纳的区域综合能源系统优化运行分析[J]. 太阳能学报, 2023, 44(10): 585.
ZHANG H H, LIU F C.Optimized operation analysis of regional integrated energy system considering wind power consumption[J]. Acta energiae solaris sinica, 2023, 44(10): 585.
[24] 罗澍忻, 韩应生, 余浩, 等. 构网型控制在提升高比例新能源并网系统振荡稳定性中的应用[J]. 南方电网技术, 2023, 17(5): 39-48.
LUO S X, HAN Y S, YU H, et al.Application of grid-forming control in improving the oscillation stability of power systems with high proportion renewable energy integration[J]. Southern power system technology, 2023, 17(5): 39-48.

基金

国家电网有限公司总部管理科技项目(4000-202332455A-3-2-ZN)

PDF(2354 KB)

Accesses

Citation

Detail

段落导航
相关文章

/