单层、中孔和内插石英玻璃管3种吸热器耦合传热特性对比研究

李兴友, 向韬, 王孝宇, 戴贵龙

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 369-377.

PDF(3593 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3593 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 369-377. DOI: 10.19912/j.0254-0096.tynxb.2024-1451

单层、中孔和内插石英玻璃管3种吸热器耦合传热特性对比研究

  • 李兴友, 向韬, 王孝宇, 戴贵龙
作者信息 +

COMPARATIVE STUDY ON COUPLED HEAT TRANSFER OF THREE TYPES OF POROUS SOLAR RECEIVERS WITH CENTER HOLE

  • Li Xingyou, Xiang Tao, Wang Xiaoyu, Dai Guilong
Author information +
文章历史 +

摘要

为降低多孔介质吸热器中心表面温度、提高热效率和并保障安全运行,设计一种内插石英玻璃管的吸热芯结构。该吸热器通过在单层多孔介质吸热器中心区域开设圆柱孔,并插入石英玻璃管,实现工质流体速度与高斯型聚集太阳光热流密度的匹配。在此基础上,采用数值模拟与实验验证相结合的方法,对单层、中孔和内插石英玻璃管3种多孔介质吸热器的高温吸热特性进行对比研究。结果表明,与单层吸热芯相比,中孔、内插玻璃管吸热器中心区域流速由0.75 m/s分别提升至1.6 m/s和1.8 m/s,聚集太阳光热流密度峰值由1.5 MW/m2分别降至0.92 MW/m2和1.2 MW/m2,固体峰值温度由1740 K分别降至1444 K和1436 K。在3~10 g/s流速范围内,热效率由单层吸热芯的58%~70%提升至中孔吸热芯的66%~78%和内插石英玻璃管吸热芯的71%~82%。

Abstract

A modified porous solar receiver with a hollow glass tube at the center was developed to decrease the surface temperature of the receiver and improve thermal efficiency and security.The hollow glass tube matches the heat transfer fluid (HTF) and the concentrated solar flux (CSF),which can increase the velocity of the HTF by suction effect and reduce the CSF by increasing the absorption area. Then, the high-temperature heat transfer characteristics of the single porous receiver (SPR),modified porous receiver with a center hole (MPR-CH),and modified porous receiver with a hollow glass tube (MPR-HGT) were investigated and compared.Results show that the maximal velocity of the HTF at the center zone of the SPR,MPR-CH,and MPR-HGT increases from 0.75 m/s to 1.6 m/s and 1.8 m/s, respectively. The peak CSF of the SPR, MPR-CH, and MPR-HGT increases from 0.75 m/s to 1.6m/s and 1.8 m/s,respectively.Accordingly,the peak solid temperature of the SPR,MPR-CH,and MPR-HGT decreases from 1740 K to 1444 K and 1436 K, respectively.The thermal efficiency of the three receivers increases from 59.3%~71.9% to 65.7%~79.9% and 70.4%~81.6% during the mass flow rate of the HTF from 3.0 g/s to 10.0 g/s. This modified porous solar receiver design can be implemented into advanced, high-temperature power cycles.

关键词

太阳能 / 吸热器 / 热流密度 / 传热性能 / 热效率

Key words

solar energy / solar absorber / heat flux / heat transfer performance / thermal efficiency

引用本文

导出引用
李兴友, 向韬, 王孝宇, 戴贵龙. 单层、中孔和内插石英玻璃管3种吸热器耦合传热特性对比研究[J]. 太阳能学报. 2025, 46(12): 369-377 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1451
Li Xingyou, Xiang Tao, Wang Xiaoyu, Dai Guilong. COMPARATIVE STUDY ON COUPLED HEAT TRANSFER OF THREE TYPES OF POROUS SOLAR RECEIVERS WITH CENTER HOLE[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 369-377 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1451
中图分类号: TK513.5   

参考文献

[1] AVILA-MARIN A L, FERNANDEZ-RECHE J, MARTINEZ-TARIFA A. Modelling strategies for porous structures as solar receivers in central receiver systems: a review[J]. Renewable and sustainable energy reviews, 2019, 111: 15-33.
[2] HE Y L, DU S, SHEN S.Advances in porous volumetric solar receivers and enhancement of volumetric absorption[J]. Energy reviews, 2023, 2(3): 100035.
[3] CUNSOLO S, COQUARD R, BAILLIS D, et al.Radiative properties of irregular open cell solid foams[J]. International journal of thermal sciences, 2017, 117: 77-89.
[4] WU Z Y, CALIOT C, FLAMANT G, et al.Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers[J]. Solar energy, 2011, 85(9): 2374-2385.
[5] 戴贵龙, 陈雪淇, 庄莹. 玻璃套管双层吸热芯的热辐射特性研究[J]. 太阳能学报, 2022, 43(7): 186-190.
DAI G L, CHEN X Q, ZHUANG Y.Thermal radiation performances of solar volumetric absorbers made up of muliple tubes and porous[J]. Acta energiae solaris sinica, 2022, 43(7): 186-190.
[6] HE Y L, WANG K, QIU Y, et al.Review of the solar flux distribution in concentrated solar power: non-uniform features, challenges, and solutions[J]. Applied thermal engineering, 2019, 149: 448-474.
[7] 戴贵龙, 薛鑫杰, 陈雪淇, 等. 双层吸热芯聚集太阳光吸收分布特性研究[J]. 太阳能学报, 2021, 42(4): 328-333.
DAI G L, XUE X J, CHEN X Q, et al.Absorption distribution performances of double layer absorber for concentrated solar light[J]. Acta energiae solaris sinica, 2021, 42(4): 328-333.
[8] CHEN X, XIA X L, YAN X W, et al.Heat transfer analysis of a volumetric solar receiver with composite porous structure[J]. Energy conversion and management, 2017, 136: 262-269.
[9] SEDIGHI M, PADILLA R V, ALAMDARI P, et al.A novel high-temperature (>700 ℃), volumetric receiver with a packed bed of transparent and absorbing spheres[J]. Applied energy, 2020, 264: 114705.
[10] ZHANG Q Q, CHANG Z S, FU M K, et al.Performance analysis of a light uniform device for the solar receiver or reactor[J]. Energy, 2023, 270: 126940.
[11] DU S, XIA T, HE Y L, et al.Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution[J]. Applied energy, 2020, 275: 115343.
[12] 刘锋章, 程博, 秦宁, 等. 太阳能驱动甲烷重整泡沫反应器聚光特性研究及优化设计[J]. 太阳能学报, 2024, 45(7): 599-606.
LIU F Z, CHENG B, QIN N, et al.Research on condensation performance and optimization of solar-driven methane reforming foam reactors[J]. Acta energiae solaris sinica, 2024, 45(7): 599-606.
[13] ALI M, RADY M, ATTIA M A A, et al. Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers[J]. Renewable energy, 2020, 145: 1849-1861.
[14] ZHANG S D, SUN C, SUN F X, et al.Spectral properties of an UV fused silica within 0.8 to 5 µm at elevated temperatures[J]. Infrared physics & technology, 2017, 85: 293-299.
[15] XIA X L, CHEN X, SUN C, et al.Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams[J]. International journal of heat and mass transfer, 2017, 106: 83-90.

基金

国家自然科学基金(52176181); 福建省科技计划项目(2022N0016); 市科技计划项目(N2023Y006)

PDF(3593 KB)

Accesses

Citation

Detail

段落导航
相关文章

/