基于染料表面改性的GeSe薄膜光电性能研究

张文艺, 吴海峰, 韩莹键, 段凯强, 王耀翔, 王瑞祥

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 161-167.

PDF(1526 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1526 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 161-167. DOI: 10.19912/j.0254-0096.tynxb.2024-1454

基于染料表面改性的GeSe薄膜光电性能研究

  • 张文艺1, 吴海峰1, 韩莹键1, 段凯强1, 王耀翔2, 王瑞祥1
作者信息 +

STUDY ON PHOTOVOLTAIC PERFORMANCE OF GeSe THIN FILMS BASED ON DYE SURFACE MODIFICATION

  • Zhang Wenyi1, Wu Haifeng1, Han Yingjian1, Duan Kaiqiang1, Wang Yaoxiang2, Wang Ruixiang1
Author information +
文章历史 +

摘要

为提升GeSe薄膜的光吸收性能和PCE,提出一种染料表面改性方法,使用罗丹明B(RB)、亚甲基蓝(MB)和刚果红(CR)等单染料及其混合物对GeSe薄膜进行修饰。实验结果显示,所有染料修饰后的GeSe薄膜光吸收能力均有显著提升,其中RB+MB混合染料效果最明显。通过Scaps-1D软件模拟不同染料修饰的GeSe薄膜太阳电池性能,发现MB修饰的GeSe薄膜PCE最高,达到26.32%,而RB+MB改性PCE较低,可能由于过高的染料负载与电池其他性能参数不匹配所致。研究证明了染料改性的可行性。

Abstract

To enhance the light absorption properties and PCE of GeSe thin films, this study proposes a dye-sensitization surface modification method, employing single dyes such as Rhodamine B (RB), Methylene Blue (MB), and Congo Red (CR), as well as their mixtures, to modify the GeSe thin films. Experimental results show that the light absorption capacity of all dye-modified GeSe thin films is significantly improved, with the RB+MB mixed dye demonstrating the most pronounced effect. By simulating the performance of dye-modified GeSe thin-film solar cells using Scaps-1D software, it is found that the GeSe thin film modified with MB exhibits the highest PCE, reaching 26.32 %, whereas the RB+MB modification results in a lower PCE, possibly due to excessive dye loading not being well-matched with other cell performance parameters. This study demonstrates the feasibility of dye-based modification.

关键词

薄膜太阳电池 / 光吸收性能 / 太阳电池效率 / GeSe吸收层 / 有机染料 / 数值模拟 / 界面改性

Key words

thin film solar cells / light absorption performance / solar cell efficiency / GeSe absorber layer / organic dye / numerical simulation / surface modification

引用本文

导出引用
张文艺, 吴海峰, 韩莹键, 段凯强, 王耀翔, 王瑞祥. 基于染料表面改性的GeSe薄膜光电性能研究[J]. 太阳能学报. 2025, 46(12): 161-167 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1454
Zhang Wenyi, Wu Haifeng, Han Yingjian, Duan Kaiqiang, Wang Yaoxiang, Wang Ruixiang. STUDY ON PHOTOVOLTAIC PERFORMANCE OF GeSe THIN FILMS BASED ON DYE SURFACE MODIFICATION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 161-167 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1454
中图分类号: TM914.4+2   

参考文献

[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] SHOCKLEY W, QUEISSER H J.Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.
[3] LIU S C, DAI C M, MIN Y M, et al.An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics[J]. Nature communications, 2021, 12: 670.
[4] SAN ESTEBAN A C M, ENRIQUEZ E P. Graphene-anthocyanin mixture as photosensitizer for dye-sensitized solar cell[J]. Solar energy, 2013, 98: 392-399.
[5] TSUBOMURA H, MATSUMURA M, NOMURA Y, et al.Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell[J]. Nature, 1976, 261(5559): 402-403.
[6] O’REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
[7] TIWARI S, MALL C, SOLANKI P P.Evaluation of mixed dye combination by spectral study for the application as photosensitizer in photogalvanic cells for solar energy conversion and storage[J]. Surfaces and interfaces, 2022, 29: 101688.
[8] 杨英, 潘德群, 高菁, 等. 基于p型光电极的染料敏化太阳能电池研究进展[J]. 无机化学学报, 2018, 34(4): 615-626.
YANG Y, PAN D Q, GAO J, et al.Research of dye-sensitized solar cells based on p-type photoelectrode[J]. Chinese journal of inorganic chemistry, 2018, 34(4): 615-626.
[9] MAKUŁA P, PACIA M, MACYK W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra[J]. The journal of physical chemistry letters, 2018, 9(23): 6814-6817.
[10] GONG J W, LIANG J, SUMATHY K.Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials[J]. Renewable and sustainable energy reviews, 2012, 16(8): 5848-5860.
[11] PRABAKARAN K, OH H, MANIVANNAN R, et al.A novel class of xanthene dyes with chemically linked UV absorber molecule and their photophysical properties[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2022, 279: 121437.
[12] BERDIYOROV G R, HAMOUDI H.Electronic transport properties of a single biphenyl molecule anchored on Au(111)with sulfur, selenium, and tellurium atoms[J]. The journal of chemical physics, 2022, 156(17): 174701.
[13] 刘勇武, 杜俊霖, 吴卓鹏, 等. 单晶硅片表面微纳复合结构制备及光特性研究[J]. 太阳能学报, 2021, 42(11): 1-4.
LIU Y W, DU J L, WU Z P, et al.Preparation and optical characterization research of micro/nano-strcuctures on monocrystalline silicon wafer surface[J]. Acta energiae solaris sinica, 2021, 42(11): 1-4.
[14] LU T F, LI W, ZHANG H X.Rational design of metal-free organic D-π-A dyes in dye-sensitized solar cells: insight from density functional theory (DFT) and time-dependent DFT (TD-DFT) investigations[J]. Organic electronics, 2018, 59: 131-139.
[15] KANTCHEV E A B, NORSTEN T B, TAN M L Y, et al. Thiophene-containing pechmann dyes and related compounds: synthesis, and experimental and DFT characterisation[J]. Chemistry: a European journal, 2012, 18(2): 695-708.
[16] XUE D J, LIU S C, DAI C M, et al.GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation[J]. Journal of the American Chemical Society, 2017, 139(2): 958-965.
[17] KATUBI K M, SHIONG N S, PAKHURUDDIN M Z, et al.Over 35% efficiency of three absorber layers of perovskite solar cells using SCAPS 1-D[J]. Optik, 2024, 297: 171579.
[18] OUSLIMANE T, ET-TAYA L, ELMAIMOUNI L, et al.Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material[J]. Heliyon, 2021, 7(3): e06379.
[19] IHALANE E H, ATOURKI L, KIROU H, et al.Numerical study of thin films CIGS bilayer solar cells using SCAPS[J]. Materials today: proceedings, 2016, 3(7): 2570-2577.
[20] 韩莹健, 吴海峰, 王丹丹, 等. 以GeSe为光吸收层的薄膜太阳电池模拟优化研究[J]. 太阳能学报, 2023, 44(9): 66-71.
HAN Y J, WU H F, WANG D D, et al.Simulation and optimization of thin-film solar cells with GeSe as absorption layer[J]. Acta energiae solaris sinica, 2023, 44(9): 66-71.
[21] OKELLO A, OWUOR B O, NAMUKOBE J, et al.Influence of the pH of anthocyanins on the efficiency of dye sensitized solar cells[J]. Heliyon, 2022, 8(7): e09921.
[22] LAW M, GREENE L E, JOHNSON J C, et al.Nanowire dye-sensitized solar cells[J]. Nature materials, 2005, 4(6): 455-459.
[23] LAW M, GREENE L E, RADENOVIC A, et al.ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells[J]. The journal of physical chemistry B, 2006, 110(45): 22652-22663.
[24] RAJAB F M.Effect of solvent, dye-loading time, and dye choice on the performance of dye-sensitized solar cells[J]. Journal of nanomaterials, 2016, 2016(1): 3703167.
[25] ONO T, YAMAGUCHI T, ARAKAWA H.Influence of dye adsorption solvent on the performance of a mesoporous TiO2 dye-sensitized solar cell using infrared organic dye[J]. Journal of solar energy engineering, 2010, 132(2): 021101.

基金

北京市自然科学基金(3252025); 国家自然科学基金(52306220); 北京市教委科研项目(KM202310016009)

PDF(1526 KB)

Accesses

Citation

Detail

段落导航
相关文章

/