针对电池容量非线性衰退问题,提出一种基于多通道特征融合优化VMD-SCNN-LSTM的锂电池剩余使用寿命(RUL)预测方法。首先,根据皮尔逊相关系数选取健康因子(HI),提取锂电池充放电过程中电压、电流和温度的时序特性曲线。其次,采用变分模态分解(VMD)对电池容量劣化曲线进行分解。最后,将HIs和经过VMD分解的容量频域特征作为卷积神经网络(CNN)的多通道并行输入,原始容量作为长短期记忆网络(LSTM)的输入,再将两者提取的特征进行融合开展RUL预测。同时引入3倍交叉验证训练方法和dropout技术来避免过拟合问题。实验结果表明,所提最优混合模型的均方根误差RMSE不超过3.1%,平均绝对百分比误差MAPE不超过1.3%。
Abstract
Aiming at the problem of nonlinear decline of battery capacity, a RUL prediction method for lithium battery based on multi-channel feature fusion optimization VMD-SCNN-LSTM is proposed. Firstly, the health factors are selected according to the Pearson correlation coefficient, and the time-series characteristic curves of voltage, current and temperature during the charging and discharging process of Li-ion battery are extracted. Secondly, the battery capacity degradation curves are decomposed using variational modal decomposition (VMD). Finally, the HI and the frequency-domain features of the capacity decomposed by VMD are used as the multi-channel parallel inputs to the convolutional neural network (CNN), and the original capacity was used as the input to the long-short-term memory network (LSTM), and then the two extracted features are fused to carry out RUL prediction. A triple cross-validation training method and dropout technique are also introduced to avoid the overfitting problem. The optimal hybrid model proposed in this study has an RMSE of no more than 3.1% and a MAPE of no more than 1.3%.
关键词
锂电池 /
剩余使用寿命 /
变分模态分解 /
卷积神经网络 /
长短期记忆网络
Key words
lithium-ion battery /
remaining useful life /
variational mode decomposition /
convolutional neural network /
long short-term memory network
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17.
ZHAO J H, TIAN L T, CHENG L.Review on state estimation and remaining useful life prediction methods for lithium-ion battery[J]. Power generation technology, 2023, 44(1): 1-17.
[2] 夏向阳, 吕崇耿, 吴小忠, 等. 基于混合模型的储能用锂离子电池剩余寿命预测方法研究[J]. 太阳能学报, 2024, 45(10): 726-735.
XIA X Y, LYU C G, WU X Z, et al.Research on remaining life prediction method of lithium-ion battery for energy storage based on hybrid model[J]. Acta energiae solaris sinica, 2024, 45(10): 726-735.
[3] 吴诗淼, 王文波, 朱婷, 等. 基于跳跃连接多尺度CNN的锂离子电池剩余寿命预测[J]. 太阳能学报, 2024, 45(7): 199-208.
WU S M, WANG W B, ZHU T, et al.Prediction of residual life of lithium ion battery based on multi-scale CNN with jump connectioncnn[J]. Acta energiae solaris sinica, 2024, 45(7): 199-208.
[4] LI X Y, CHEN L, HUA W, et al.Optimal charging for lithium-ion batteries to avoid lithium plating based on ultrasound-assisted diagnosis and model predictive control[J]. Applied energy, 2024, 367: 123396.
[5] CHEN C Q, HUANG Y F, YU X Y, et al.Improving the accuracy of voltage estimation in the low charge state range at low temperature: an equivalent circuit model considering the influence of temperature on solid phase diffusion process[J]. Journal of energy storage, 2024, 88: 111577.
[6] MERROUCHE W, LEKOUAGHET B, BOUGUENNA E, et al.Parameter estimation of ECM model for Li-ion battery using the weighted mean of vectors algorithm[J]. Journal of energy storage, 2024, 76: 109891.
[7] VIGNESH R, ASHOK B.Intelligent energy management through neuro-fuzzy based adaptive ECMS approach for an optimal battery utilization in plugin parallel hybrid electric vehicle[J]. Energy conversion and management, 2023, 280: 116792.
[8] MOHAMMADI F.Lithium-ion battery state-of-charge estimation based on an improved Coulomb-counting algorithm and uncertainty evaluation[J]. Journal of energy storage, 2022, 48: 104061.
[9] CHE Y H, HU X S, LIN X K, et al.Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects[J]. Energy & environmental science, 2023, 16(2): 338-371.
[10] ZHENG X J, FANG H J.An integrated unscented Kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction[J]. Reliability engineering & system safety, 2015, 144: 74-82.
[11] WANG L Z, JIANG S Y, MAO Y T, et al.Lithium-ion battery state of health estimation method based on variational quantum algorithm optimized stacking strategy[J]. Energy reports, 2024, 11: 2877-2891.
[12] SHE C Q, LI Y, ZOU C F, et al.Offline and online blended machine learning for lithium-ion battery health state estimation[J]. IEEE transactions on transportation electrification, 2022, 8(2): 1604-1618.
[13] MEHTA C, SANT A V, SHARMA P.SVM-assisted ANN model with principal component analysis based dimensionality reduction for enhancing state-of-charge estimation in LiFePO4 batteries[J]. E-prime-advances in electrical engineering, electronics and energy, 2024, 8: 100596.
[14] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[15] LI Z H, BAI F, ZUO H F, et al.Remaining useful life prediction for lithium-ion batteries based on iterative transfer learning and mogrifier LSTM[J]. Batteries, 2023, 9(9): 448.
[16] QI X, HONG C F, YE T, et al.Frequency reconstruction oriented EMD-LSTM-AM based surface temperature prediction for lithium-ion battery[J]. Journal of energy storage, 2024, 84: 111001.
[17] ZHANG Z, LIU X, DONG X, et al.A hybrid RUL prediction framework for lithium-ion batteries based on EEMD and KAN-LSTM[J]. Batteries, 2025, 11(10): 348.
[18] LI C Z, LIN W, WU H Y, et al.Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model[J]. Renewable energy, 2023, 215: 118913.
[19] YUAN Z F, TIAN T, HAO F C, et al.A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries[J]. Journal of power sources, 2024, 609: 234697.
[20] DING G R, WANG W B, ZHU T.Remaining useful life prediction for lithium-ion batteries based on CS-VMD and GRU[J]. IEEE access, 2022, 10: 89402-89413.
[21] KATTENBORN T, LEITLOFF J, SCHIEFER F, et al.Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS journal of photogrammetry and remote sensing, 2021, 173: 24-49.
[22] HAFIZHAHULLAH H, YULIANI A R, PARDEDE H, et al.A hybrid CNN-LSTM for battery remaining useful life prediction with charging profiles data[C]//Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications. Virtual Event, Indonesia, 2023: 106-110.
[23] CHEN J C, CHEN T L, LIU W J, et al.Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery[J]. Advanced engineering informatics, 2021, 50: 101405.
基金
国家电网有限公司科技项目(5400-202318246A-1-1-ZN)