基于自适应谱图小波卷积神经网络的风力机轴承故障诊断

徐志成, 罗硕, 张闯, 金亮, 张献

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 564-573.

PDF(1287 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1287 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 564-573. DOI: 10.19912/j.0254-0096.tynxb.2024-1462

基于自适应谱图小波卷积神经网络的风力机轴承故障诊断

  • 徐志成1,2, 罗硕1,2, 张闯1, 金亮1,2, 张献1~3
作者信息 +

FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON ADAPTIVE SPECTRAL GRAPH WAVELET CONVOLUTIONAL NEURAL NETWORKS

  • Xu Zhicheng1,2, Luo Shuo1,2, Zhang Chuang1, Jin Liang1,2, Zhang Xian1~3
Author information +
文章历史 +

摘要

针对传统智能故障诊断方法在强噪声和复杂工况环境下难以提取可靠特征、诊断准确率低及特征可解释性差的问题,该文提出一种面向航空发电机、风力发电机等大型旋转设备内部轴承的自适应谱图小波卷积神经网络故障诊断方法。该方法考虑多传感器间的交互作用,振动信号转换成图结构数据,将融合猎豹优化算法的自适应谱图小波与重加权小波系数策略嵌入图卷积层,构建自适应谱图小波卷积神经网络。自适应谱图小波卷积神经网络根据振动信号特性动态调整谱图小波的设计参数和分解层数,实现多尺度特征的高效提取,并将不同尺度特征赋予不同权重,增强信号去噪和弱特征提取能力。该方法实现在高噪声环境下端到端的轴承原位故障诊断,同时为图卷积操作提供高效且可解释的框架。实验结果表明,所提方法在高噪声和复杂工况下均表现出良好的诊断性能及鲁棒性。

Abstract

Traditional intelligent fault diagnosis methods face challenges in extracting reliable features, achieving high diagnostic accuracy, and providing feature interpretability under strong noise and complex operating conditions. To address these issues, this paper proposes an adaptive spectral graph wavelet convolutional neural network (ASGWCN) fault diagnosis method for the bearings in large rotating equipment,such as aircraft engines and wind turbines. The method considers the interactions between multiple sensors and converts vibration signals into graph-structured data. It integrates the adaptive spectral graph wavelet and re-weighted wavelet coefficient strategies,optimized by the Cheetah optimization algorithm,into the graph convolution layers,thereby constructing the ASGWCN. This approach dynamically adjusts the design parameters and decomposition levels of the spectral graph wavelet based on the characteristics of the vibration signal,enabling efficient multi-scale feature extraction. The different scale features are assigned different weights,enhancing the signal denoising and weak feature extraction capabilities. The method achieves end-to-end bearing fault diagnosis in situ under high noise environments,while also providing improved interpretability for the graph convolution process. The experimental results show that the proposed method exhibits excellent diagnostic performance and robustness under both high noise and complex working conditions.

关键词

风力机组 / 轴承 / 故障诊断 / 谱图网络 / 图小波

Key words

wind turbines / bearings / fault diagnosis / graph networks / graph wavelet

引用本文

导出引用
徐志成, 罗硕, 张闯, 金亮, 张献. 基于自适应谱图小波卷积神经网络的风力机轴承故障诊断[J]. 太阳能学报. 2025, 46(12): 564-573 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1462
Xu Zhicheng, Luo Shuo, Zhang Chuang, Jin Liang, Zhang Xian. FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON ADAPTIVE SPECTRAL GRAPH WAVELET CONVOLUTIONAL NEURAL NETWORKS[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 564-573 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1462
中图分类号: TH133.33   

参考文献

[1] LIU J Y, WAN L, XIE F Q, et al.Cross-machine deep subdomain adaptation network for wind turbines fault diagnosis[J]. Mechanical systems and signal processing, 2024, 210: 111151.
[2] 徐硕, 邓艾东, 杨宏强, 等. 基于改进残差网络的旋转机械故障诊断[J]. 太阳能学报, 2023, 44(7): 409-418.
XU S, DENG A D, YANG H Q, et al.Rotating machinery fault diagnosis method based on improved residual neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 409-418.
[3] LIU J Y, WANG X S, WU S J, et al.Wind turbine fault detection based on deep residual networks[J]. Expert systems with applications, 2023, 213: 119102.
[4] 张辉, 戈宝军, 韩斌, 等. 基于GAF-CapsNet的电机轴承故障诊断方法[J]. 电工技术学报, 2023, 38(10): 2675-2685.
ZHANG H, GE B J, HAN B, et al.Fault diagnosis method of motor bearing based on GAF-CapsNet[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2675-2685.
[5] 孔晓佳, 孟良, 许同乐, 等. 基于AVMD和WDK的风电齿轮箱轴承复合故障诊断方法研究[J]. 太阳能学报, 2022, 43(12): 206-213.
KONG X J, MENG L, XU T L, et al.Research on bearing compound fault diagnosis methods based on AVMD and WDK for wind turbine gearbox[J]. Acta energiae solaris sinica, 2022, 43(12): 206-213.
[6] LI T F, ZHOU Z, LI S N, et al.The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study[J]. Mechanical systems and signal processing, 2022, 168: 108653.
[7] MICHAU G, FRUSQUE G, FINK O.Fully learnable deep wavelet transform for unsupervised monitoring of high-frequency time series[J]. Proceedings of the national academy of sciences of the United States of America, 2022, 119(8): e2106598119.
[8] CHEN Z W, XU J M, PENG T, et al.Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge[J]. IEEE transactions on cybernetics, 2022, 52(9): 9157-9169.
[9] YU X X, TANG B P, ZHANG K.Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 6502714.
[10] SU G X, WANG H C, ZHANG Y, et al.Simple and deep graph attention networks[J]. Knowledge-based systems, 2024, 293: 111649.
[11] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[J]. arXiv, 2016: arXiv: 1606.09375.
[12] 董鑫, 李国龙, 何坤, 等. 谱图小波阈值降噪及其在滚刀主轴振动信号分析中的应用[J]. 机械工程学报, 2020, 56(11): 96-107.
DONG X, LI G L, HE K, et al.Spectral graph wavelet threshold denoising and its application to vibration signal analysis for hob spindle[J]. Journal of mechanical engineering, 2020, 56(11): 96-107.
[13] DONG X, LI, G, JIA Y C,et al. Non-iterative denoising algorithm for mechanical vibration signal using spectral graph wavelet transform and detrended fluctuation analysis. [J]. Mechanical systems & signal processing,2021,Vol.149: 107202.
[14] CHENG J, YANG Y, LI X, et al.Symplectic geometry packet decomposition and its applications to gear fault diagnosis[J]. Mechanical systems and signal processing, 2022, 174: 109096.
[15] AKBARI M A, ZARE M, AZIZIPANAH-ABARGHOOEE R, et al.The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems[J]. Scientific reports, 2022, 12: 10953.
[16] HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R.Wavelets on graphs via spectral graph theory[J]. Applied and computational harmonic analysis, 2011, 30(2): 129-150.
[17] 谭启瑜, 马萍, 张宏立. 基于图卷积神经网络的滚动轴承故障诊断[J]. 噪声与振动控制, 2023, 43(6): 101-108, 116.
TAN Q Y, MA P, ZHANG H L.Fault diagnosis of rolling bearings based on graph convolutional networks[J]. Noise and vibration control, 2023, 43(6): 101-108, 116.
[18] HOU L, YI H M, JIN Y H, et al.Inter-shaft bearing fault diagnosis based on aero-engine system: a benchmarking dataset study[J]. Journal of dynamics, monitoring and diagnostics, 2023, 2(4): 207-289
[19] HAMILTON W L, YING R, LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA, 2017: 1025-1035.
[20] SHAO S Y, MCALEER S, YAN R Q, et al.Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE transactions on industrial informatics, 2019, 15(4): 2446-2455.

基金

国家自然科学基金项目(52307238); 河北省燕赵青年科学家项目(E2024202109); 天津市重点项目(22JCZDJC00620)

PDF(1287 KB)

Accesses

Citation

Detail

段落导航
相关文章

/