基于VMD和多时间尺度分类预测的风电单机短期功率预测研究

夏卫平, 邓艾东, 薛原, 卞文彬, 刘洋, 刘东瀛

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 554-563.

PDF(2485 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2485 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 554-563. DOI: 10.19912/j.0254-0096.tynxb.2024-1466

基于VMD和多时间尺度分类预测的风电单机短期功率预测研究

  • 夏卫平1,2, 邓艾东1,2, 薛原1,2, 卞文彬1,2, 刘洋1,2, 刘东瀛3
作者信息 +

RESEARCH ON SHORT-TERM WIND TURBINE POWER FORECASTING BASED ON VMD AND MULTI-TIME SCALE CLASSIFICATION FORECASTING

  • Xia Weiping1,2, Deng Aidong1,2, Xue Yuan1,2, Bian Wenbin1,2, Liu Yang1,2, Liu Dongying3
Author information +
文章历史 +

摘要

为提高风电单机短期功率预测精度,提出一种以变分模态分解(VMD)为基础,分别构建长时间尺度趋势预测模块(LTTFM)和短时间尺度周期预测模块(STPFM)进行分类预测的风电单机短期功率预测模型。首先,针对风电功率序列本身的不平稳性,采用变分模态分解方法对原始功率序列进行分解,依据相关性将分解后各模态分为低频分量、高频分量以及残差。然后,根据各分量特性,设计不同的预测方法。基于门控循环单元(GRU)构建长时间尺度趋势预测模块对分解后的低频分量进行预测;基于维度变换与二维卷积神经网络(2D-CNN)构建短时间尺度周期预测模块对分解后的高频分量以及残差进行预测;最后,综合各分量预测结果获得最终的预测功率。采用风电场实际运行数据和公开数据集对提出的模型进行验证,结果表明所提模型预测误差(MAE)较常用模型下降34.9%~44.1%,具有较高的预测精度。

Abstract

To enhance the accuracy of short-term wind turbine power forecasting, a forecasting model based on variational mode decomposition (VMD) is proposed. The model constructs a long-term trend forecasting module (LTTFM) and a short-term periodic forecasting module (STPFM) for multi-time scale classification forecasting. Firstly, considering the non-stationarity of the wind power sequence, the original power sequence is decomposed by VMD, and the intrinsic mode functions are categorized into low-frequency components, high-frequency components, and residuals based on their correlation. Then, according to the characteristics of each component, different forecasting modules are designed. Long-term trend forecasting module based on GRU is constructed for the forecasting of low-frequency components. Short-term periodic forecasting module containing dimensional transformation and 2D-CNN is constructed for the forecasting of high-frequency components and residuals. Finally, the final power is obtained by synthesizing the forecasting results of each component. The proposed model is verified using actual operation data from a wind turbine, and the results show that the mean absolute error (MAE) of the proposed model is reduced by 34.9%-44.1% compared to commonly used models, indicating that the proposed model has a higher forecasting accuracy.

关键词

风电功率 / 预测 / 变分模态分解 / 循环神经网络 / 卷积神经网络

Key words

wind power / forecasting / variational mode decomposition / recurrent neural network / convolutional neural network

引用本文

导出引用
夏卫平, 邓艾东, 薛原, 卞文彬, 刘洋, 刘东瀛. 基于VMD和多时间尺度分类预测的风电单机短期功率预测研究[J]. 太阳能学报. 2025, 46(12): 554-563 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1466
Xia Weiping, Deng Aidong, Xue Yuan, Bian Wenbin, Liu Yang, Liu Dongying. RESEARCH ON SHORT-TERM WIND TURBINE POWER FORECASTING BASED ON VMD AND MULTI-TIME SCALE CLASSIFICATION FORECASTING[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 554-563 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1466
中图分类号: TM614   

参考文献

[1] 徐进. 电力行业2024年综述及2025年展望[J]. 能源,2025, (3): 48-54.
XU J.Review of power industry development in 2024 and outlook for 2025[J]. Energy, 2025, (3): 48-54.
[2] 叶林, 路朋, 赵永宁, 等. 含风电电力系统有功功率模型预测控制方法综述[J]. 中国电机工程学报, 2021, 41(18): 6181-6198.
YE L, LU P, ZHAO Y N, et al.Review of model predictive control for power system with large-scale wind power grid-connected[J]. Proceedings of the CSEE, 2021, 41(18): 6181-6198.
[3] 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674.
XIAO Y P, WANG X F, WANG X L, et al.Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674.
[4] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J]. High voltage engineering, 2021, 47(4): 1129-1143.
[5] 汪鸿, 朱正甲, 陈建华, 等. 基于人工智能技术与物理方法结合的新能源功率预测研究[J]. 高电压技术, 2023, 49(S1): 111-117.
WANG H, ZHU Z J, CHEN J H, et al.Research on new energy power prediction based on artificial intelligence technology and physical method[J]. High voltage engineering, 2023, 49(S1): 111-117.
[6] YUNUS K, THIRINGER T, CHEN P Y.ARIMA-based frequency-decomposed modeling of wind speed time series[J]. IEEE transactions on power systems, 2016, 31(4): 2546-2556.
[7] 朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41(12): 3797-3802.
ZHU Q M, LI H Y, WANG Z Q, et al.Short-term wind power forecasting based on LSTM[J]. Power system technology, 2017, 41(12): 3797-3802.
[8] HAN Y C, TONG X Q, SHI S Y, et al.Ultra-short-term wind power interval prediction based on hybrid temporal inception convolutional network model[J]. Electric power systems research, 2023, 217: 109159.
[9] 刘雨佳, 樊艳芳, 白雪岩, 等. 基于特征交叉机制和误差补偿的风力发电功率短期预测[J]. 电工技术学报, 2023, 38(12): 3277-3288.
LIU Y J, FAN Y F, BAI X Y, et al.Short-term wind power prediction based on feature crossover mechanism and error compensation[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3277-3288.
[10] 吴慧军, 郭超雨, 苏承国, 等. 基于EEMD-GRU-MC的短期风功率组合预测方法[J]. 南方电网技术, 2023, 17(2): 66-73.
WU H J, GUO C Y, SU C G, et al.Combined prediction method for short-term wind power based on EEMD-GRU-MC[J]. Southern power system technology, 2023, 17(2): 66-73.
[11] 丁同, 傅晓锦, 刘明旺. 基于GA-VMD-BiLSTM算法的风电功率预测[J]. 扬州大学学报(自然科学版), 2022, 25(4): 44-49.
DING T, FU X J, LIU M W.Research on wind power predition based on GA-VMD-BiLSTM algorithm[J]. Journal of Yangzhou University (natural science edition), 2022, 25(4): 44-49.
[12] 邱文智, 张文煜, 郭振海, 等. 基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测[J]. 太阳能学报, 2024, 45(3): 73-82.
QIU W Z, ZHANG W Y, GUO Z H, et al.Ultra-short-term wind speed forecasting based on optimalcombination modelof secondary decompositionand crow search algorithm[J]. Acta energiae solaris sinica, 2024, 45(3): 73-82.
[13] 黎静华, 桑川川, 甘一夫, 等. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(3): 1-11.
LI J H, SANG C C, GAN Y F, et al.A review of researches on wind power forecasting technology[J]. Modern electric power, 2017, 34(3): 1-11.
[14] BOTTERUD A, ZHOU Z, WANG J H, et al.Demand dispatch and probabilistic wind power forecasting in unit commitment and economic dispatch: a case study of Illinois[J]. IEEE transactions on sustainable energy, 2013, 4(1): 250-261.
[15] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[16] GERS F A, SCHMIDHUBER J, CUMMINS F.Learning to forget: continual prediction with LSTM[J]. Neural computation, 2000, 12(10): 2451-2471.
[17] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha, Qatar, 2014: 1724-1734.
[18] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[19] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 1-9.
[20] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778.
[21] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 5987-5995.
[22] LIU Z, MAO H Z, WU C Y, et al.A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA, 2022: 11966-11976.
[23] LEE G, DING Y, GENTON M G, et al.Power curve estimation with multivariate environmental factors for inland and offshore wind farms[J]. Journal of the American statistical association, 2015, 110(509): 56-67.
[24] ZENG A L, CHEN M X, ZHANG L, et al.Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI conference on artificial intelligence, 2023, 37(9): 11121-11128.
[25] DAS A, KONG W, LEACH A, et al. Long-term Forecasting with TiDE: time-series dense encoder[J]. arXiv preprint arXiv:2304.08424, 2023.
[26] WU H, CHEN Y, GAO Z, et al.timesNet: Temporal 2D-variation modeling for general time series analysis[C]// Proceedings of the 10th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda: ICLR, 2023.

基金

江苏省碳达峰碳中和科技创新专项资金(BE2023854); 中央高校基本科研业务费专项资金(2242024k30046; 2242024k30047)

PDF(2485 KB)

Accesses

Citation

Detail

段落导航
相关文章

/