面向厌氧消化的多能耦合供热系统的性能研究

周燕南, 孙立, 陈振乾, 施娟

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 235-242.

PDF(2990 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2990 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 235-242. DOI: 10.19912/j.0254-0096.tynxb.2024-1537

面向厌氧消化的多能耦合供热系统的性能研究

  • 周燕南, 孙立, 陈振乾, 施娟
作者信息 +

STUDY ON PERFORMANCE OF MULTI-ENERGY COUPLED THERMAL SUPPLY SYSTEM FOR ANAEROBIC DIGESTION

  • Zhou Yannan, Sun Li, Chen Zhenqian, Shi Juan
Author information +
文章历史 +

摘要

为提高厌氧消化产沼的稳定性和节能性,提出基于太阳能、污水余热和水源热泵的多能耦合供热系统。基于TRNSYS仿真平台,研究光伏光热一体化(PV/T)组件等设备的动态运行特性,从可再生能源、?以及节能性的角度评估系统的全年运行特性并研究其经济效益。结果表明:PV/T组件的逐月平均电效率在1月份达到最大值17.9%,热效率在7月份达到最大值10.2%;蓄热水箱全年逐月平均温度均高于10 ℃;水源热泵逐月平均COP在6月份达到最高值3.8。系统全年平均综合能效比为12.5,全年可再生能源贡献率达81.2%,?效率在1月份达到最大值66.7%。系统全生命周期平准化能量成本为0.159 元/kWh,其经济效益相对单一污水源热泵系统和太阳能-电加热器系统具有显著优势。

Abstract

To enhance the stability and energy efficiency of biogas production in anaerobic digester, a multi-energy coupled thermal supply system integrating solar energy, sewage waste heat and heat pump is proposed. Based on TRNSYS simulation platform, annual dynamic performance of the equipment including photovoltaic thermal(PV/T) module is researched. Renewable energy, exergy energy conservation of system and its economic benefit are studied. The results indicate that monthly average electrical efficiency of the PV/T module peaks in January at 17.9%, while the thermal efficiency reaches its maximum in July at 10.2%; the average monthly temperature of the thermal storage tank is higher than 10 ℃ throughout the year; the average monthly COP of the heat pump is highest in June at 3.8. The annual average overall energy efficiency ratio of system is 12.5, with an annual renewable energy contribution rate of 81.2%. The exergy efficiency peaks in January at 66.7%. The levelized cost of energy of system over its entire lifecycle is 0.159 yuan/kWh, making it the most economical compared with sewage source heat pump system and the solar-electric system.

关键词

厌氧消化 / 太阳能 / 余热回收 / 水源热泵 / 供热

Key words

anaerobic digestion / solar energy / waste heat recovery / water source heat pump / thermal supply

引用本文

导出引用
周燕南, 孙立, 陈振乾, 施娟. 面向厌氧消化的多能耦合供热系统的性能研究[J]. 太阳能学报. 2025, 46(5): 235-242 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1537
Zhou Yannan, Sun Li, Chen Zhenqian, Shi Juan. STUDY ON PERFORMANCE OF MULTI-ENERGY COUPLED THERMAL SUPPLY SYSTEM FOR ANAEROBIC DIGESTION[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 235-242 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1537
中图分类号: TK519   

参考文献

[1] SINGH R, PARITOSH K, PAREEK N, et al.Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: review[J]. Bioresource technology, 2022, 360: 127596.
[2] NAYERI D, MOHAMMADI P, BASHARDOUST P, et al.A comprehensive review on the recent development of anaerobic sludge digestions: performance, mechanism, operational factors, and future challenges[J]. Results in engineering, 2024, 22: 102292.
[3] SUDIARTHA G A W, IMAI T, CHAIRATTANAMANOKORN P, et al. Unveiling the impact of temperature shift on microbial community dynamics and metabolic pathways in anaerobic digestion[J]. Process safety and environmental protection, 2024, 186: 1505-1515.
[4] GARKOTI P, NI J Q, THENGANE S K.Energy management for maintaining anaerobic digestion temperature in biogas plants[J]. Renewable and sustainable energy reviews, 2024, 199: 114430.
[5] 纪栋, 姚志松, 张陈, 等. 餐厨垃圾厌氧发酵产沼气过程中的微生物群落结构解析[J]. 太阳能学报, 2022, 43(9): 354-362.
JI D, YAO Z S, ZHANG C, et al.Analysis of microbial community structure in biogas production by anaerobic fermentation of kitchen waste[J]. Acta energiae solaris sinica, 2022, 43(9): 354-362.
[6] GABALLAH E S, ABDELKADER T K, LUO S, et al.Enhancement of biogas production by integrated solar heating system: a pilot study using tubular digester[J]. Energy, 2020, 193: 116758.
[7] 孟成林, 李荣平, 李秀金. 用于污泥厌氧消化的温室-太阳能热水器组合增温系统[J]. 农业工程学报, 2009, 25(9): 210-214.
MENG C L, LI R P, LI X J.Integrated system of greenhouse and solar heater for anaerobic digestion of excess activated sludge[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 210-214.
[8] LI J P, WAN D D, JIN S R, et al.Feasibility of annual wet anaerobic digestion temperature-controlled by solar energy in cold areas[J]. Applied thermal engineering, 2023, 219: 119333.
[9] SU B S, WANG H S, ZHANG X D, et al.Using photovoltaic thermal technology to enhance biomethane generation via biogas upgrading in anaerobic digestion[J]. Energy conversion and management, 2021, 235: 113965.
[10] 马瑞泽, 张景新, 蒋祎璠, 等. 太阳能PV/T热泵辅助分布式餐厨垃圾能源转化系统研究[J]. 太阳能学报, 2022, 43(8): 137-142.
MA R Z, ZHANG J X, JIANG Y F, et al.Research on distributed food waste-to-energy system coupled with PV/T heat pump[J]. Acta energiae solaris sinica, 2022, 43(8): 137-142.
[11] HAJABDOLLAHI OUDERJI Z, GUPTA R, MCKEOWN A, et al.Integration of anaerobic digestion with heat pump: machine learning-based technical and environmental assessment[J]. Bioresource technology, 2023, 369: 128485.
[12] NAZARI A, SOLTANI M, HOSSEINPOUR M, et al.Integrated anaerobic co-digestion of municipal organic waste to biogas using geothermal and CHP plants: a comprehensive analysis[J]. Renewable and sustainable energy reviews, 2021, 152: 111709.
[13] LUO L L, LU L D, SHEN X L, et al.Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for co-generation of heating, cooling and biogas[J]. Energy, 2023, 282: 128220.
[14] WANG J L, ZHANG N, XU S J, et al.Carbon footprint analysis and comprehensive evaluation of municipal wastewater treatment plants under different typical upgrading and reconstruction modes[J]. Science of the total environment, 2023, 880: 163335.
[15] WANG Q, ZHANG X M, GENG X Q, et al.Experiments on the characteristics of a sewage water source heat pump system for heat recovery from bath waste[J]. Applied thermal engineering, 2022, 204: 117956.
[16] JAFARIAN M, ASSAREH E, AGARWAL N, et al.Energy, economic, and environmental analysis of combined cooling, heat, power and water (CCHPW) system incorporated with photovoltaic/thermal collectors and reverse osmosis systems[J]. Journal of building engineering, 2023, 75: 107059.
[17] 刘艳峰, 王亚星, 罗西, 等. 基于动态运行策略的太阳能分布式供能系统设计运行联合优化[J]. 太阳能学报, 2022, 43(5): 244-251.
LIU Y F, WANG Y X, LUO X, et al.Design and operation optimization of solar distributed energy supply system based on dynamic operation strategy[J]. Acta energiae solaris sinica, 2022, 43(5): 244-251.
[18] GB/T 51350—2019, 近零能耗建筑技术标准[S].
GB/T 51350—2019, Technical standard for nearly zero energy buildings[S].
[19] CHEN Y W, QUAN M C, WANG D J, et al.Energy, exergy, and economic analysis of a solar photovoltaic and photothermal hybrid energy supply system for residential buildings[J]. Building and environment, 2023, 243: 110654.
[20] 程程, 姜益强, 王菲. 适用于近零能耗建筑的新型太阳能-污水源热泵系统运行特性[J]. 制冷学报, 2022, 43(3): 142-149.
CHENG C, JIANG Y Q, WANG F.Continuous operation analysis of new solar sewage dual-source heat pump for nearly zero-energy buildings[J]. Journal of refrigeration, 2022, 43(3): 142-149.

基金

江苏省自然科学基金(BK20220038); 江苏省建设系统科技项目(7603009124; 7603009138; 7603009139)

PDF(2990 KB)

Accesses

Citation

Detail

段落导航
相关文章

/