基于交错并联VDCM的新能源充电站一体化系统稳定控制

薛宇, 高博麟, 贺彬, 钟薇, 梁子泳, 曹家乐

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 376-384.

PDF(2720 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2720 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 376-384. DOI: 10.19912/j.0254-0096.tynxb.2024-1667

基于交错并联VDCM的新能源充电站一体化系统稳定控制

  • 薛宇1, 高博麟1, 贺彬2, 钟薇1, 梁子泳1, 曹家乐2
作者信息 +

STABILITY CONTROL OF NEW ENERGY CHARGING STATION INTEGRATED SYSTEM BASED ON INTERLEAVED PARALLEL VDCM

  • Xue Yu1, Gao Bolin1, He Bin2, Zhong Wei1, Liang Ziyong1, Cao Jiale2
Author information +
文章历史 +

摘要

传统的控制策略在面对高功率充电需求和电网电压波动时难以适应实际需求。为此,提出基于交错并联虚拟直流电机(VDCM)控制策略以期提高新能源充电站稳定运行能力。将交错并联DC/DC应用到充电站拓扑结构中,有效减小电动车充电站输出电流纹波,提高充电站的电能质量和稳定性;同时引入VDCM控制策略,为新能源充电站输出提供稳定可靠的惯量、阻尼支撑,实现对新能源充电站输出电压和电流的精确控制。基于小信号模型分析了转动惯量及阻尼系数对充电系统稳定性的影响情况,并通过Matlab/Simulink搭建的仿真模型分别选用电动汽车和电动重卡两种车型接入/断开充电站进行仿真验证。

Abstract

Conventional control strategies are difficult to adapt to the actual demand changes when encountering high power charging demand and grid voltage fluctuations. To this end, the interleaved parallel virtual DC machine control strategy is used to improve the stable operation capability of new energy charging station in this paper. The interleaved parallel DC/DC converter is used in the charging station system, which can effectively reduce the electric vehicle charging station output current ripple and improve the power quality and stability of the charging station; Meanwhile, the DC/DC converter using VDCM control strategy can provide stable and reliable inertia and damping support for the output of the new energy charging station, which realizes the precise control of the output voltage and current of the new energy charging station. Finally, the small signal model is used to analyses the effect of rotational inertia and damping coefficients on the stability of the charging system. And the physical simulation model of the new energy charging system is constructed based on the Matlab/Simulink software, which was used to simulate and validate the two models of electric cars and electric heavy trucks to connect/disconnect the charging station.

关键词

风电机组 / 充电站 / 虚拟电机 / 交错并联 / 小信号分析

Key words

wind turbine generators / charging stations / virtual motor / interleaved parallel / small signal analysis

引用本文

导出引用
薛宇, 高博麟, 贺彬, 钟薇, 梁子泳, 曹家乐. 基于交错并联VDCM的新能源充电站一体化系统稳定控制[J]. 太阳能学报. 2025, 46(6): 376-384 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1667
Xue Yu, Gao Bolin, He Bin, Zhong Wei, Liang Ziyong, Cao Jiale. STABILITY CONTROL OF NEW ENERGY CHARGING STATION INTEGRATED SYSTEM BASED ON INTERLEAVED PARALLEL VDCM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 376-384 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1667
中图分类号: TK89   

参考文献

[1] 陈艳波, 刘镇湘, 田昊欣, 等. 高速公路绿色能源系统研究综述及展望[J]. 中国电机工程学报, 2025, 45(08): 3016-3031.
CHEN Y B, LIU Z X, TIAN H X, et al.et al. A review and prospect of expressway green energy system[J]. Proceedings of the CSEE, 2025, 45(08): 3016-3031.
[2] 陈星莺, 孙晓聪, 丁一, 等. 支撑电力能源清洁高效转型的用能权交易研究与展望[J]. 电力系统自动化, 2022, 46(24): 1-15.
CHEN X Y, SUN X C, DING Y, et al.Research and prospects of energy consumption right trading for supporting clean and efficient electric energy transition[J]. Automation of electric power systems, 2022, 46(24): 1-15.
[3] 杨蒙, 陈玥, 徐潇源, 等. 电力-交通融合研究综述:模型、算法与关键问题[J]. 电力系统自动化, 2025, 49(9): 1-16.
YANG M, CHEN Y, XU X Y, et al.Review on research of power-transportation fusion: models, algorithms and key problems[J]. Automation of Electric Power Systems, 2025, 49(9): 1-16.
[4] 王震坡, 张瑾, 刘鹏, 等. 电动汽车充电站规划研究综述[J]. 中国公路学报, 2022, 35(12): 230-252.
WANG Z P, ZHANG J, LIU P, et al.Overview of planning of electric vehicle charging stations[J]. China journal of highway and transport, 2022, 35(12): 230-252.
[5] 人民日报. 截至2023年底我国累计建成充电基础设施859.6万台[EB/OL].2024-03-18. https://www.gov.cn/lianbo/bumen/202403/content_6939863.htm
The People's Daily. By the end of2023 China had built a total of 8,596,000 units of charging infrastructure[EB/OL]. 2024-03-18. https://www.gov.cn/lianbo/bumen/202403/content_6939863.htm
[6] 闫丽梅, 曾家威, 徐建军, 等. 含电动汽车和光伏的配电网演化动态博弈调度策略[J]. 太阳能学报, 2024, 45(5): 316-323.
YAN L M, ZENG J W, XU J J, et al.Scheduling strategy of distribution grid with electric vehicles and photolatic based on evolutionary dynamics game[J]. Acta energiae solaris sinica, 2024, 45(5): 316-323.
[7] 陈先龙, 王秀丽, 陈洁, 等. 考虑分布式可再生能源交易的风电商与电动汽车充电站协同优化调度[J]. 电网技术, 2023, 47(11): 4598-4610.
CHEN X L, WANG X L, CHEN J, et al.Optimal collaborative scheduling of wind power operators and electric vehicle charging stations considering distributed renewable energy trading[J]. Power system technology, 2023, 47(11): 4598-4610.
[8] YE Z Z, GAO Y Q, YU N P.Learning to operate an electric vehicle charging station considering vehicle-grid integration[J]. IEEE transactions on smart grid, 2022, 13(4): 3038-3048.
[9] JIAO F X, ZOU Y, ZHANG X D, et al.Online optimal dispatch based on combined robust and stochastic model predictive control for a microgrid including EV charging station[J]. Energy, 2022, 247: 123220.
[10] 董海鹰, 贠韫韵, 汪宁渤, 等. 基于双重电价的电动汽车充放电两阶段优化调度策略[J]. 太阳能学报, 2021, 42(4): 115-124.
DONG H Y, YUN Y Y, WANG N B, et al.Two-stage dispatch optimization strategy for charging and discharging of electric vehicles based on double electricity price[J]. Acta energiae solaris sinica, 2021, 42(4): 115-124.
[11] DENG X S, ZHANG Q, LI Y, et al.Hierarchical distributed frequency regulation strategy of electric vehicle cluster considering demand charging load optimization[J]. IEEE transactions on industry applications, 2022, 58(1): 720-731.
[12] 袁泉, 汤奕. 考虑路电耦合的电动汽车集群多时间尺度低碳协同调控策略[J]. 电网技术, 2024, 48(12): 4969-4979.
YUAN Q, TANG Y.Multi-time scale decarbonization coordination strategy of electric vehicle fleets considering transportation and electricity coupling[J]. Power system technology, 2024, 48(12): 4969-4979.
[13] 葛少云, 杜咏梅, 郭玥, 等. 基于分布鲁棒优化的车-站-网日前能量管理与交易[J]. 电力系统自动化, 2024, 48(5): 11-20.
GE S Y, DU Y M, GUO Y, et al.Day-ahead energy management and trading of electric vehicles, charging stations and distribution networks based on distributionally robust optimization[J]. Automation of electric power systems, 2024, 48(5): 11-20.
[14] SHI T, ZHAO F, ZHOU H Y, et al.Research on intelligent energy management method of multifunctional fusion electric vehicle charging station based on machine learning[J]. Electric power systems research, 2024, 229: 110037.
[15] 黄帅博, 陈蓓, 高降宇. 基于马尔可夫决策过程的电动汽车充电站能量管理策略[J]. 电力自动化设备, 2022, 42(10): 92-99.
HUANG S B, CHEN B, GAO J Y.Energy management strategy of electric vehicle charging station based on Markov decision process[J]. Electric power automation equipment, 2022, 42(10): 92-99.
[16] ABDELSHAFY A M, SAMIR O, ELNOZAHY A, et al.Innovative energy management strategy of battery and fuel cell buses charging station[J]. Energy conversion and management, 2024, 315: 118815.
[17] 周玮, 蓝嘉豪, 麦瑞坤, 等. 无线充电电动汽车V2G模式下光储直流微电网能量管理策略[J]. 电工技术学报, 2022, 37(1): 82-91.
ZHOU W, LAN J H, MAI R K, et al.Research on power management strategy of DC microgrid with photovoltaic, energy storage and EV-wireless power transfer in V2G mode[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 82-91.
[18] KE S, YANG J, CHEN L, et al.A frequency control strategy for EV stations based on MPC-VSG in islanded microgrids[J]. IEEE transactions on industrial informatics, 2024, 20(2): 1819-1831.
[19] 全慧, 李相俊, 贾学翠, 等. 提高快充电站与配电网互动能力的储能系统模型及控制策略[J]. 电力系统自动化, 2022, 46(19): 23-30.
QUAN H, LI X J, JIA X C, et al.Model and control strategy of energy storage system for improving interaction capability between fast charging station and distribution network[J]. Automation of electric power systems, 2022, 46(19): 23-30.
[20] FARAJI H, HEMMATI R.Multi-layer control on DC fast charging stations equipped with distributed energy storages and connected to distribution network: managing power and energy following events[J]. Sustainable cities and society, 2023, 98: 104828.
[21] WANG R, LI J D, SUN Q Y, et al.Energy transfer converter between electric vehicles: DC-DC converter based on virtual power model predictive control[J]. IEEE transactions on consumer electronics, 2023, 69(3): 556-567.
[22] 施兴烨, 柯松, 张帆, 等. 考虑充电站可调潜力的虚拟惯性功率补偿控制策略[J]. 电力系统自动化, 2024, 48(3): 73-81.
SHI X Y, KE S, ZHANG F, et al.Control strategy for virtual-inertial power compensation considering adjustable potential of charging station[J]. Automation of electric power systems, 2024, 48(3): 73-81.
[23] 于艳君, 崔明恺, 柴凤. 双绕组永磁同步电机滑模变结构控制[J]. 电工技术学报, 2022, 37(22): 5799-5807.
YU Y J, CUI M K, CHAI F.Sliding mode variable structure control of a dual-winding permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5799-5807.
[24] 高圣伟, 王浩, 王议锋, 等. 多输入交错并联Boost变换器功率分配控制策略[J]. 太阳能学报, 2022, 43(12): 62-69.
GAO S W, WANG H, WANG Y F, et al.Power distribution control strategy of multi-input interleaved parallel Boost converter[J]. Acta energiae solaris sinica, 2022, 43(12): 62-69.
[25] 王勉, 唐芬, 陈麒宇, 等. DC-DC变换器并联系统无源控制及大信号稳定性研究[J]. 中国电机工程学报, 2022, 42(18): 6789-6803.
WANG M, TANG F, CHEN Q Y, et al.Passivity-based control and large signal stability of DC-DC converter parallel system[J]. Proceedings of the CSEE, 2022, 42(18): 6789-6803.

基金

国家重点研发计划(2023YFB4301800)

PDF(2720 KB)

Accesses

Citation

Detail

段落导航
相关文章

/